Scope of Nanoparticles in Environmental Toxicant Remediation

  • Anupam DhasmanaEmail author
  • Swati Uniyal
  • Vivek Kumar
  • Sanjay Gupta
  • Kavindra Kumar Kesari
  • Shafiul Haque
  • Mohtashim Lohani
  • Jaya Pandey


The requirement and need of novel techniques to speed up the sanitization of polluted and adulterated sites and reduction in the expenses of these methods is a growing concern. The application of nanoparticles, predominantly the iron nanoparticles, as a pioneering and inventive technique to decontaminate the adulterated sites has received attention and consideration in recent times. Though, all over the world, many research studies have been carried on nanoparticles, diminutive level of knowledge is realized about their performance, actions, and conduct in the soil and in aquatic habitats, their adsorption on soil mineral particles, and communication with soil microbes.

Industrial sectors, which are involved in the manufacturing of display, optical and photonic products, semiconductors, memory and storage devices, nano-biotechnology equipment (energy aspects), and health care goods, generate most of the products that contain nanoparticles. On the other hand, nanotechnology is a technique which has been employed as an environmental know-how to guard the nature through prevention, handling, curing, and cleanup of pollution. In this chapter, we have focused on the environmental toxicant cleanup and discuss a background and overview of the existing practices related to the remediation. The research findings; social issues; probable environmental, human health, and safety repercussions; and future thoughts for remediation using nanotechnology are also discussed. Here, we also discuss nanoscale zerovalent iron in some detail. The technique of nanoremediation has the capacity to lessen the total costs of decontamination at the bigger polluted sites. Moreover, the purpose of this technique is also to reduce the cleanup duration, eradicate the treatment requirement and dumping of the contaminated soil, and also lessen contaminant amount to almost zero. Further, we believe that suitable evaluation of nanoremediation approaches, especially the large-scale environmental studies, also need to be addressed to avoid and counteract any probable hostile environmental effects.


Nanoparticles Remediation Toxicants Environment 


  1. Addleman, R. S., Egorov, O. B., O’Hara, M., Zemaninan, T. S., Fryxell, G., & Kuenzi, D. (2005). Nanostructured sorbents for solid phase microextraction and environmental assay. In B. Karn, T. Masciangioli, W. Zhang, V. Colvin, & P. Alivisatos (Eds.), Nanotechnology and the environment: Applications and implications (pp. 186–199). Washington, DC: Oxford University Press.Google Scholar
  2. Agnihotri, S., Rood, M. J., & Rostam-Abadi, M. (2005). Adsorption equilibrium of organic vapors on single-walled carbon nanotubes. Carbon, 43, 2379–2388.CrossRefGoogle Scholar
  3. Bardos, P., Bone, B., Daly, P., Elliott, D., Jones, S., Lowry, G., & Merly, C. (2014). A risk/benefit appraisal for the application of nano-scale Zero Valent Iron (nZVI) for the remediation of contaminated sites. WP9 NanoRem.
  4. Bochra, B. K., Latifa, L. E. A., Hafedh, K., & Abdelhamid, G. (2011). TiO2 nanotubes as solid-phase extraction adsorbent for the determination of polycyclic aromatic hydrocarbons in environmental water samples. Journal of Environmental Sciences, 23(5), 860–867.CrossRefGoogle Scholar
  5. Bull, R. J., Brinbaum, L. S., Cantor, K. P., Rose, J. B., Butterworth, B. E., Pegram, R., & Tuomisto, J. (1995). Water chlorination: Essential process and cancer hazard. Fundamental and Applied Toxicology, 28(1), 155–166.CrossRefGoogle Scholar
  6. Das, D., Suresh Kumar, M. K., Koley, S., Mithal, N., & Pillai, C. G. S. (2010). Sorption of uranium on magnetite nanoparticles. Journal of Radioanalytical and Nuclear Chemistry, 285, 447–454.CrossRefGoogle Scholar
  7. Dhasmana, A., Jamal, M. Q. S., Mir, S. S., Bhatt, M. L. B., Rahman, Q., Gupta, R., Siddiqui, M. H., & Lohani, M. (2014). Titanium dioxide nanoparticles as guardian against environmental carcinogen Benzo [alpha] Pyrene. PLoS One, 9(9), e107068.CrossRefGoogle Scholar
  8. Dhasmana, A., Mohd, Q., Jamal, S., Gupta, R., Siddiqui, M. H., Kesari, K. K., Wadhwa, G., Khan, S., Lohani, M. (2015). Titanium dioxide nanoparticles provide protection against polycyclic aromatic hydrocarbon BaP & Chrysene induced perturbation of DNA repair machinery: A Computational Biol Approach. Biotechnology and Applied Biochemistry (pp. 187–199). Wiley Publication.Google Scholar
  9. Dickinson, M., & Scott, T. B. (2011). The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. Journal of Nanoparticle Research, 13, 3699–3711.CrossRefGoogle Scholar
  10. Engates, K. E., & Shipley, H. J. (2011). Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: Effect of particle size, solid concentration, and exhaustion. Environmental Science and Pollution Research, 18, 386–395.CrossRefGoogle Scholar
  11. Ghorbani, H. R., Safekordi, A. A., Attar, H., & Rezayat Sorkhabadi, S. M. (2011). Biological and non-biological methods for silver nanoparticles synthesis. Chemical and Biochemical Engineering Quarterly, 25, 317–326.Google Scholar
  12. Grünwald, A., Št’astný, B., Slavíčková, K., & Slavíček, M. (2002). Formation of halo forms during chlorination of natural waters. Acta Polytechnica, 42(2), 56–59.Google Scholar
  13. Iijima, S., & Ichihashi, T. (1993). Single shell carbon nanotube of diameter 1 nm. Nature, 363, 603–605.CrossRefGoogle Scholar
  14. Karn, B., Todd, K., & Martha, O. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environmental Health Perspectives, 117(12), 1823–1831.CrossRefGoogle Scholar
  15. Karnchanasest, B., & Santisukkasaem, O. (2007). A preliminary study for removing Phenanthrene & Benzo(a)Pyrene from soil by nanoparticles. Journal of Applied Sciences, 7(21), 3317–3321.CrossRefGoogle Scholar
  16. Khan, I., Farhan, M., Singh, P., & Thiagarajan, P. (2014). Nanotechnology for environmental remediation. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(3), 1916–1927.Google Scholar
  17. Kumar, S. R., & Gopinath, P. (2016). Nano-bioremediation, applications of nanotechnology for bioremediation. In L. K. Wang, M. H. S. Wang, Y. T. Hung, N. K. Shammas, & J. P. Chen (Eds.), Remediation of heavy metals in the environment (pp. 46–58). Boca Raton: Taylor & Francis.Google Scholar
  18. Li, Y. H., Dinga, J., Luanb, Z., Dia, Z., Zhua, Y., Xua, C., Wu, D., & Wei, B. (2003). Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41(14), 2787–2792.CrossRefGoogle Scholar
  19. Li, X. Q., Elliott, D. W., & Zhang, W. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31, 111–122.CrossRefGoogle Scholar
  20. Liang, P., Liu, Y., Guo, L., Zeng, J., & Pei, H. L. (2004). Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the pre concentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 19, 1489–1492.CrossRefGoogle Scholar
  21. Long, R. Q., & Yang, R. T. (2001). Carbon nanotubes as superior sorbent for dioxin removal. Journal of the American Chemical Society, 123(9), 2058–2059.CrossRefGoogle Scholar
  22. Lowry, G. V. (2007). Nanomaterials for groundwater remediation. In M. R. Wiesner & J. Bottero (Eds.), Environmental nanotechnology (pp. 297–336). New York: The McGraw-Hill Companies.Google Scholar
  23. Mueller, N. C., Jürgen, B., Johannes, B., Miroslav, Č., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research, 19(2), 550–558.CrossRefGoogle Scholar
  24. OPERATIONAL PROGRAMME ENVIRONMENT, Ministry of Environmental and Nature Protection, Republic of Croatia. 2007–2013.Google Scholar
  25. Otto, M., Floyd, M., & Bajpai, S. (2008). Nanotechnology for site remediation. Remediation, 19(1), 99–108.CrossRefGoogle Scholar
  26. Pandey, B., & Fulekar, M. H. (2012). Nanotechnology: Remediation technologies to clean up the environmental pollutants. Research Journal of Chemical Sciences, 2(2), 90–96.Google Scholar
  27. Patil, S. S., Shedbalkar, S. U., Truskewycz, A., Chopade, B. A., & Ball, A. S. (2016). Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions. Environmental Technology & Innovation, 5, 10–21.CrossRefGoogle Scholar
  28. Peng, X., Luan, Z., Ding, J., Di, Z., Li, Y., & Tian, B. (2005). Ceria nanoparticles supported nanotubes for removal of arsenate in water. Materials Letters, 59, 399–403.CrossRefGoogle Scholar
  29. Prashant, M., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: Technological concepts and future applications. Journal of Nanoparticle Research, 10, 507–517.CrossRefGoogle Scholar
  30. Qixin, D., Chaozhang, H., Wei, X., Jianping, Z., & Yiqiang, Z. (2011). Significant reduction of harmful compounds in tobacco smoke by the use of titanate nanosheets and nanotubes. Chemical Communications, 47, 6153–6155.CrossRefGoogle Scholar
  31. Rajan, C. S. (2011). Nanotechnology in groundwater remediation. International Journal of Environmental Science and Technology, 2(3), 47–53.Google Scholar
  32. Rao, G. P., Lu, C., & Su, F. (2007). Sorption of divalent heavy metal ions from aqueous solutions by carbon nanotubes: A review. Purification Technology, 58(1), 224–231.CrossRefGoogle Scholar
  33. Rickerby, D. G., & Morrison, M. (2007). Nanotechnology and the environment: A European perspective. Science and Technology of Advanced Materials, 8, 19–24.CrossRefGoogle Scholar
  34. Saleh, N., Sirk, K., Liu, Y., & Phenrat, T. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24(1), 45–57.CrossRefGoogle Scholar
  35. Savage, N., & Diallo, M. S. (2005). Nanomaterials and water purification: Opportunities and challenges. Journal of Nanoparticle Research, 7, 331–342.CrossRefGoogle Scholar
  36. Silbernage, R., Díaz, A., Steffensmeier, E., Clearfield, A., & Blüme, J. (2014). Wilkinson-type hydrogenation catalysts immobilized on zirconium phosphate nanoplatelets. Journal of Molecular Catalysis A: Chemical, 394(15), 217–223.CrossRefGoogle Scholar
  37. Singh, R., Misra, V., & Singh, R. P. (2011). Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. Journal of Nanoparticle Research, 13, 4063–4073.CrossRefGoogle Scholar
  38. Smart, S. K., Cassidy, A. I., Lu, G. Q., & Martin, D. J. (2006). The biocompatibility of carbon nanotubes. Carbon, 44(6), 1034–1047.CrossRefGoogle Scholar
  39. Tao, H., Hao, S., Chang, F., Wang, L., Zhang, Y., Cai, X., & Zeng, J. S. D. (2011). Photodegradation of bisphenol a by Titana nanoparticles in mesoporous MCM-41. Water, Air, & Soil Pollution, 214, 491–498.CrossRefGoogle Scholar
  40. Theron, J. J. A., Walker, T. E., & Cloete, T. E. (2008). Nanotechnology and water treatment: Applications and emerging opportunities. Critical Reviews in Microbiology, 34(1), 43–69.CrossRefGoogle Scholar
  41. Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nanotoday, 1(2), 44–48.CrossRefGoogle Scholar
  42. Tsai, C. Y., His, H. C., Bai, H., Fan, K. S., & Chen, C. (2011). TiO2-x nanoparticles synthesized using he/ar. Thermal plasma and their effectiveness on low-. Concentration mercury vapor removal. Journal of Nanoparticle Research, 13, 4739–4748.CrossRefGoogle Scholar
  43. Turkevich, J., Stevenson, P. C., & Hillier, J. (1953). The formation of colloidal gold. The Journal of Physical Chemistry, 57, 670–673.CrossRefGoogle Scholar
  44. US EPA. (2014). Remediation: Selected sites using or testing nanoparticles for remediation.Google Scholar
  45. Varma, R., & Nadagouda, M. N. (2009). Risk reduction vie greener synthesis of noble metal nanostructures and nano composites. Environmental Security, 3, 209–217.Google Scholar
  46. Xie, Y., Wang, B., Li, F., Ma, L., Ni, M., & Shen, W. (2014). Molecular mechanisms of reduced nerve toxicity by titanium dioxide nanoparticles in the phoxim-exposed brain of Bombyx mori. PLoS One, 9(6), e101062.CrossRefGoogle Scholar
  47. Xin, R. Z., Ping, Y., & Meng, Y. Z. (2001). Research on photocatalytic degradation of organophosphorus pesticides using TiO2.SiO2/beads. Industrial Water Treatment, 21(3), 13–39.Google Scholar
  48. Zhang, L., Chang, X., Hu, Z., Zhang, L., Shi, J., & Gao, R. (2010). Selective solid phase extraction and preconcentration of mercury(II) from environmental and biological samples using nanometer silica functionalized by 2,6-pyridine dicarboxylic acid. Microchimica Acta, 168, 79–85.CrossRefGoogle Scholar
  49. Zhang, Q., Pan, B., Zhang, S., Wang, J., Zhang, W., & Lv, L. (2011). New insights into nanocomposite adsorbents for water treatment: A case study of polystyrene-supported zirconium phosphate nanoparticles for lead removal. Journal of Nanoparticle Research, 13, 5355–5364.CrossRefGoogle Scholar
  50. Zhu, X., Zhou, D., Wang, Y., Cang, L., Fang, G., & Fan, J. (2012). Remediation of polychlorinated biphenyl-contaminated soil by soil washing and subsequent TiO2 photocatalytic degradation. Journal of Soils and Sediments, 12, 1371–1379.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anupam Dhasmana
    • 1
    Email author
  • Swati Uniyal
    • 2
  • Vivek Kumar
    • 1
  • Sanjay Gupta
    • 1
  • Kavindra Kumar Kesari
    • 3
  • Shafiul Haque
    • 4
  • Mohtashim Lohani
    • 4
  • Jaya Pandey
    • 5
  1. 1.Himalayan School of BiosciencesSwami Rama Himalayan UniversityDehradunIndia
  2. 2.School of BiotechnologyGautam Buddh UniversityGreater NoidaIndia
  3. 3.Department of Applied PhysicsAalto UniversityEspooFinland
  4. 4.Research and Scientific Unit, College of Nursing & Allied Health SciencesJazan UniversityJazanKingdom of Saudi Arabia
  5. 5.Amity University Uttar Pradesh CampusLucknowIndia

Personalised recommendations