Advertisement

Role of Solar Energy Applications for Environmental Sustainability

  • Atin K. Pathak
  • Kapil Chopra
  • Har Mohan Singh
  • V. V. Tyagi
  • Richa Kothari
  • Sanjeev Anand
  • A. K. Pandey
Chapter

Abstract

Energy and environment are the opposite sides of the same coin. Increasing energy production depends on the fossil fuel availability and is the main cause of the environmental degradation by emission of greenhouse gases. To overcome the environmental degradation problem, the whole world is moving towards the renewable energy technologies. The sun is the main direct source of all forms of energy present on the earth. The solar energy can prove to be the sustainable future for maintaining energy demand. Solar energy is the utmost auspicious technology because it can be used for heating as well as electricity production. This technology is the most mature technology and can be used at large or small scale as cleanest source of energy. This chapter deals with the different solar energy technologies mainly working towards the environmental sustainability and cleaning.

Keywords

Energy Environment Solar energy Environmental sustainability 

Notes

Acknowledgements

Financial assistance in the form of Junior Research Fellowship (JRF) to Atin Kumar Pathak under Inspire Fellowship scheme by the Department of Science and Technology, Ministry of Science and Technology (Govt. of India), New Delhi, which is gratefully acknowledged. One of the author Mr. Har Mohan Singh is thankful to Ministry of New and Renewable Energy for National Renewable Energy Fellowship. Dr. V. V. Tyagi is also highly thankful to University Grant Commission (Govt. of India) for providing startup research grant at Shri Mata Vaishno Devi University, Katra (J&K).

References

  1. Abad, H. K. S., Ghiasi, M., Mamouri, S. J., & Shafii, M. B. (2013). A novel integrated solar desalination system with a pulsating heat pipe. Desalination, 311, 206–210.CrossRefGoogle Scholar
  2. Abe, R. (2010). Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 179–209.CrossRefGoogle Scholar
  3. Al-Abidi, A. A., Mat, S. B., Sopian, K., Sulaiman, M. Y., Lim, C. H., & Th, A. (2012). Review of thermal energy storage for air conditioning systems. Renewable and Sustainable Energy Reviews, 16(8), 5802–5819.CrossRefGoogle Scholar
  4. Al-Badi, A. H., & Albadi, M. H. (2012). Domestic solar water heating system in Oman: Current status and future prospects. Renewable and Sustainable Energy Reviews, 16(8), 5727–5731.CrossRefGoogle Scholar
  5. Alexopoulos, S., & Hoffschmidt, B. (2010). Solar tower power plant in Germany and future perspectives of the development of the technology in Greece and Cyprus. Renewable Energy, 35(7), 1352–1356.CrossRefGoogle Scholar
  6. Al-Hayeka, I., & Badran, O. O. (2004). The effect of using different designs of solar stills on water distillation. Desalination, 169(2), 121–127.CrossRefGoogle Scholar
  7. Asbik, M., Ansari, O., Bah, A., Zari, N., Mimet, A., & El-Ghetany, H. (2016). Exergy analysis of solar desalination still combined with heat storage system using phase change material (PCM). Desalination, 381, 26–37.CrossRefGoogle Scholar
  8. Ayompe, L. M., Duffy, A., Mc Keever, M., Conlon, M., & McCormack, S. J. (2011). Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate. Energy, 36(5), 3370–3378.CrossRefGoogle Scholar
  9. Badran, A. A., Al-Hallaq, I. A., Salman, I. A. E., & Odat, M. Z. (2005). A solar still augmented with a flat-plate collector. Desalination, 172(3), 227–234.CrossRefGoogle Scholar
  10. Bahnemann, D. W., Lawton, L. A., & Robertson Peter, K. J. (2013). Chapter 16: The application of semiconductor photocatalysis for the removal of cyanotoxins from water and design concepts for solar photocatalytic reactors for large scale water treatment. In New and future developments in catalysis (pp. 395–415). Amsterdam/Boston: Elsevier.CrossRefGoogle Scholar
  11. Barrera, E. C. (1933). Double effect spherical solar still. Sun World, 17(1), 12–14.Google Scholar
  12. Behnam, P., & Shafii, M. B. (2016). Examination of a solar desalination system equipped with an air bubble column humidifier, evacuated tube collectors and thermosyphon heat pipes. Desalination, 397, 30–37.CrossRefGoogle Scholar
  13. Bernabeu, A., Vercher, R. F., Santos-Juanes, L., Simon, P. J., Lardin, C., Martinez, M. A., Vicente, J. A., Gonzalez, R., Llosac, C., Arques, A., & Amat, A. M. (2011). Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents. Catalysis Today, 161(1), 235–240.CrossRefGoogle Scholar
  14. Bloemer, J. W., Eibling, J. A., Irwin, J. R., & Lof, G. O. (1965). A practical basin-type solar still. Solar Energy, 9(4), 197–200.CrossRefGoogle Scholar
  15. Chan, H. Y., Riffat, S. B., & Zhu, J. (2010). Review of passive solar heating and cooling technologies. Renewable and Sustainable Energy Reviews, 14(2), 781–789.CrossRefGoogle Scholar
  16. Chen, B. R., Chang, Y. W., Lee, W. S., & Chen, S. L. (2009). Long-term thermal performance of a two-phase thermosyphon solar water heater. Solar Energy, 83(7), 1048–1055.CrossRefGoogle Scholar
  17. Chong, M. N., Jin, B., Chow, C. W., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997–3027.CrossRefGoogle Scholar
  18. Coffey, J. P. (1975). Vertical solar distillation. Solar Energy, 17(6), 375–378.CrossRefGoogle Scholar
  19. DeWinter, F. (Ed.). (1990). Solar collectors, energy storage, and materials (Vol. 5). Cambridge, MA: MIT press.Google Scholar
  20. Drosou, V. N., Tsekouras, P. D., Oikonomou, T. I., Kosmopoulos, P. I., & Karytsas, C. S. (2014). The HIGH-COMBI project: High solar fraction heating and cooling systems with combination of innovative components and methods. Renewable and Sustainable Energy Reviews, 29, 463–472.CrossRefGoogle Scholar
  21. El-Agouz, S. A., El-Samadony, Y. A. F., & Kabeel, A. E. (2015). Performance evaluation of a continuous flow inclined solar still desalination system. Energy Conversion and Management, 101, 606–615.CrossRefGoogle Scholar
  22. El-Sebaii, A. A. (2005). Thermal performance of a triple-basin solar still. Desalination, 174(1), 23–37.CrossRefGoogle Scholar
  23. Eltawil, M. A., & Omara, Z. M. (2014). Enhancing the solar still performance using solar photovoltaic, flat plate collector and hot air. Desalination, 349, 1–9.CrossRefGoogle Scholar
  24. Fujishima, A. K. I. R. A., Rao, T. N., & Tryk, D. A. (2000). TiO2 photocatalysts and diamond electrodes. Electrochimica Acta, 45(28), 4683–4690.CrossRefGoogle Scholar
  25. Garcia-Cortes, S., Bello-Garcia, A., & Ordonez, C. (2012). Estimating intercept factor of a parabolic solar trough collector with new supporting structure using off-the-shelf photogrammetric equipment. Applied Energy, 92, 815–821.CrossRefGoogle Scholar
  26. Gugulothu, R., Somanchi, N. S., Reddy, K. V. K., & Gantha, D. (2015). A review on solar water distillation using sensible and latent heat. Procedia Earth and Planetary Science, 11, 354–360.CrossRefGoogle Scholar
  27. Gunjo, D. G., Mahanta, P., & Robi, P. S. (2017). Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis. Renewable Energy, 114, 655–669.CrossRefGoogle Scholar
  28. Hamadou, O. A., & Abdellatif, K. (2014). Modeling an active solar still for sea water desalination process optimization. Desalination, 354, 1–8.CrossRefGoogle Scholar
  29. Hennecke, K., Schwarzbozl, P., Alexopoulos, S., Gottsche, J., Hoffschmidt, B., Beuter, M., Koll, G., & Hartz, T. (2008). Solar power tower Julich – The first test and demonstration plant for open volumetric receiver technology in Germany. In Proceedings of the 14th biennial CSP solar PACES symposium, Las Vegas, Nevada.Google Scholar
  30. Hossain, M. S., Saidur, R., Fayaz, H., Rahim, N. A., Islam, M. R., Ahamed, J. U., & Rahman, M. M. (2011). Review on solar water heater collector and thermal energy performance of circulating pipe. Renewable and Sustainable Energy Reviews, 15(8), 3801–3812.CrossRefGoogle Scholar
  31. Inamdar, J., & Singh, S. K. (2008). Techno- economic analysis of zero effluent discharge by use of solar detoxification at household level. International Journal of Natural and Engineering Sciences, 1, 208–211.Google Scholar
  32. Inoue, T., Fujishima, A., Konishi, S., & Honda, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277(5698), 637–638.CrossRefGoogle Scholar
  33. Islam, M. R., Sumathy, K., & Khan, S. U. (2013). Solar water heating systems and their market trends. Renewable and Sustainable Energy Reviews, 17, 1–25.CrossRefGoogle Scholar
  34. Jebasingh, V. K., & Herbert, G. J. (2016). A review of solar parabolic trough collector. Renewable and Sustainable Energy Reviews, 54, 1085–1091.CrossRefGoogle Scholar
  35. Kabeel, A. E., Abdelgaied, M., & Mahgoub, M. (2016a). The performance of a modified solar still using hot air injection and PCM. Desalination, 379, 102–107.CrossRefGoogle Scholar
  36. Kabeel, A. E., Khalil, A., Shalaby, S. M., & Zayed, M. E. (2016b). Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. Energy Conversion and Management, 113, 264–272.CrossRefGoogle Scholar
  37. Kabeel, A. E., Khalil, A., Shalaby, S. M., & Zayed, M. E. (2016c). Investigation of the thermal performances of flat, finned, and v-corrugated plate solar air heaters. Journal of Solar Energy Engineering, 138(5), 051004.CrossRefGoogle Scholar
  38. Kalogirou, S. A. (2004). Solar thermal collectors and applications. Progress in Energy and Combustion Science, 30(3), 231–295.CrossRefGoogle Scholar
  39. Kiatsiriroat, T. (1989). Review of research and development on vertical solar stills. ASEAN Journal on Science and Technology for Development, 6(1), 15.Google Scholar
  40. Kositzi, M., Poulios, I., Malato, S., Caceres, J., & Campos, A. (2004). Solar photocatalytic treatment of synthetic municipal wastewater. Water Research, 38(5), 1147–1154.CrossRefGoogle Scholar
  41. Kudish, A. I., Evseev, E. G., Walter, G., & Priebe, T. (2003). Simulation study on a solar desalination system utilizing an evaporator/condenser chamber. Energy Conversion and Management, 44(10), 1653–1670.CrossRefGoogle Scholar
  42. Kumar, S., Dubey, A., & Tiwari, G. N. (2014). A solar still augmented with an evacuated tube collector in forced mode. Desalination, 347, 15–24.CrossRefGoogle Scholar
  43. Kumar, P. V., Kumar, A., Prakash, O., & Kaviti, A. K. (2015). Solar stills system design: A review. Renewable and Sustainable Energy Reviews, 51, 153–181.CrossRefGoogle Scholar
  44. Kumar, R. A., Esakkimuthu, G., & Murugavel, K. K. (2016). Performance enhancement of a single basin single slope solar still using agitation effect and external condenser. Desalination, 399, 198–202.CrossRefGoogle Scholar
  45. Lawrence, S. A., & Tiwari, G. N. (1990). Theoretical evaluation of solar distillation under natural circulation with heat exchanger. Energy Conversion and Management, 30(3), 205–213.CrossRefGoogle Scholar
  46. Lupfert, E., Geyer, M., Schiel, W., Esteban, A., Osuna, R., Zarza, E., & Nava, P. (2001). Eurotrough design issues and prototype testing at PSA. Solar Engineerings, 2001, 387–392.Google Scholar
  47. Maeda, K. (2011). Photocatalytic water splitting using semiconductor particles: History and recent developments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12(4), 237–268.CrossRefGoogle Scholar
  48. Martinopoulos, G., Ikonomopoulos, A., & Tsilingiridis, G. (2016). Initial evaluation of a phase change solar collector for desalination applications. Desalination, 399, 165–170.CrossRefGoogle Scholar
  49. McLoughlin, O. A., Ibanez, P. F., Gernjak, W., Rodrıguez, S. M., & Gill, L. W. (2004). Photocatalytic disinfection of water using low cost compound parabolic collectors. Solar Energy, 77(5), 625–633.CrossRefGoogle Scholar
  50. Moorthy, M. (2010). Performance of solar air-conditioning system using heat pipe evacuated tube collector. Doctoral dissertation, UMP, National conference in mechanical engineering research and postgraduate studies. Pahang UMP Pekan.Google Scholar
  51. Morad, M. M., El-Maghawry, H. A., & Wasfy, K. I. (2015). Improving the double slope solar still performance by using flat-plate solar collector and cooling glass cover. Desalination, 373, 1–9.CrossRefGoogle Scholar
  52. Mosleh, H. J., Mamouri, S. J., Shafii, M. B., & Sima, A. H. (2015). A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector. Energy Conversion and Management, 99, 141–150.CrossRefGoogle Scholar
  53. Murtuza, S. A., Byregowda, H. V., & Imran, M. (2017). Experimental and simulation studies of parabolic trough collector design for obtaining solar energy. Resource-Efficient Technologies, 3(4), 414–421.CrossRefGoogle Scholar
  54. Mamouri, S. J., Derami, H. G., Ghiasi, M., Shafii, M. B., & Shiee, Z. (2014). Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still. Energy, 75, 501–507.CrossRefGoogle Scholar
  55. Nkwetta, D. N., Smyth, M., Zacharopoulos, A., & Hyde, T. (2013). Experimental field evaluation of novel concentrator augmented solar collectors for medium temperature applications. Applied Thermal Engineering, 51(1), 1282–1289.CrossRefGoogle Scholar
  56. Nosaka, Y., Nakamura, M., & Hirakawa, T. (2002). Behavior of superoxide radicals formed on TiO2 powder photocatalysts studied by a chemiluminescent probe method. Physical Chemistry Chemical Physics, 4(6), 1088–1092.CrossRefGoogle Scholar
  57. Nosaka, A. Y., Kojima, E., Fujiwara, T., Yagi, H., Akutsu, H., & Nosaka, Y. (2003). Photoinduced changes of adsorbed water on a TiO2 photocatalytic film as studied by 1H NMR spectroscopy. The Journal of Physical Chemistry B, 107(44), 12042–12044.CrossRefGoogle Scholar
  58. Padilla, R. V., Demirkaya, G., Goswami, D. Y., Stefanakos, E., & Rahman, M. M. (2011). Heat transfer analysis of parabolic trough solar receiver. Applied Energy, 88(12), 5097–5110.CrossRefGoogle Scholar
  59. Panchal, H. N., & Patel, S. (2017). An extensive review on different design and climatic parameters to increase distillate output of solar still. Renewable and Sustainable Energy Reviews, 69, 750–758.CrossRefGoogle Scholar
  60. Panchal, H. N., & Shah, P. K. (2014). Enhancement of distillate output of double basin solar still with vacuum tubes. Frontier Energy, 8(1), 101.CrossRefGoogle Scholar
  61. Panchal, H., Patel, P., Patel, N., & Thakkar, H. (2017). Performance analysis of solar still with different energy-absorbing materials. International Journal of Ambient Energy, 38(3), 224–228.CrossRefGoogle Scholar
  62. Parilti, N. B. (2010). Treatment of a petrochemical industry wastewater by a solar oxidation process using the Box-Wilson experimental design method. Ekoloji, 19(77), 9–15.CrossRefGoogle Scholar
  63. Patel, K., Patel, P., & Patel, J. (2012). Review of solar water heating systems. International Journal of Advanced Engineering Technology, 3(IV), 146–149.Google Scholar
  64. Peller, J. R., Whitman, R. L., Griffith, S., Harris, P., Peller, C., & Scalzitti, J. (2007). TiO2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light. Journal of Photochemistry and Photobiology, A: Chemistry, 186(2), 212–217.CrossRefGoogle Scholar
  65. Peral, J., Domenech, X., & Ollis, D. F. (1997). Heterogeneous photocatalysis for purification, decontamination and deodorization of air. Journal of Chemical Technology & Biotechnology, 70(2), 117–140.CrossRefGoogle Scholar
  66. Quinones, D. H., Alvarez, P. M., Rey, A., Contreras, S., & Beltran, F. J. (2015). Application of solar photocatalytic ozonation for the degradation of emerging contaminants in water in a pilot plant. Chemical Engineering Journal, 260, 399–410.CrossRefGoogle Scholar
  67. Rai, S. N., & Tiwari, G. N. (1983). Single basin solar still coupled with flat plate collector. Energy Conversion and Management, 23(3), 145–149.CrossRefGoogle Scholar
  68. Rajaseenivasan, T., Murugavel, K. K., Elango, T., & Hansen, R. S. (2013). A review of different methods to enhance the productivity of the multi-effect solar still. Renewable and Sustainable Energy Reviews, 17, 248–259.CrossRefGoogle Scholar
  69. Rajaseenivasan, T., Raja, P. N., & Srithar, K. (2014). An experimental investigation on a solar still with an integrated flat plate collector. Desalination, 347(2014), 131–137.CrossRefGoogle Scholar
  70. Rojas, D., Beermann, J., Klein, S. A., & Reindl, D. T. (2008). Thermal performance testing of flat-plate collectors. Solar Energy, 82(8), 746–757.CrossRefGoogle Scholar
  71. Sabiha, M. A., Saidur, R., Mekhilef, S., & Mahian, O. (2015). Progress and latest developments of evacuated tube solar collectors. Renewable and Sustainable Energy Reviews, 51, 1038–1054.CrossRefGoogle Scholar
  72. Sarwar, J., & Mansoor, B. (2016). Characterization of thermophysical properties of phase change materials for non-membrane based indirect solar desalination application. Energy Conversion and Management, 120, 247–256.CrossRefGoogle Scholar
  73. Sathyamurthy, R., El-Agouz, S. A., & Dharmaraj, V. (2015). Experimental analysis of a portable solar still with evaporation and condensation chambers. Desalination, 367, 180–185.CrossRefGoogle Scholar
  74. Shah, L. J., & Furbo, S. (2004). Vertical evacuated tubular-collectors utilizing solar radiation from all directions. Applied Energy, 78(4), 371–395.CrossRefGoogle Scholar
  75. Sivakumar, P., Christraj, W., Sridharan, M., & Jayamalathi, N. (2012). Performance improvement study of solar water heating system. ARPN Journal of Engineering and Applied Sciences, 7(1), 45–49.CrossRefGoogle Scholar
  76. Sodha, M. S., Kumar, A., Tiwari, G. N., & Pandey, G. C. (1980). Effects of dye on the performance of a solar still. Applied Energy, 7(1), 147–162.CrossRefGoogle Scholar
  77. Suneja, S., & Tiwari, G. N. (1998). Optimization of number of effects for higher yield from an inverted absorber solar still using the Runge-Kutta method. Desalination, 120(3), 197–209.CrossRefGoogle Scholar
  78. Tamini, A. (1987). Performance of a solar still with reflectors and black dye. Solar & Wind Technology, 4(4), 443–446.CrossRefGoogle Scholar
  79. Tanaka, H., Nosoko, T., & Nagata, T. (2000). Parametric investigation of a basin-type-multiple-effect coupled solar still. Desalination, 130(3), 295–304.CrossRefGoogle Scholar
  80. Tiwari, G. N., & Madhuri, G. N. (1987). Effect of water depth on daily yield of the still. Desalination, 61(1), 67–75.CrossRefGoogle Scholar
  81. Tiwari, G. N., & Tiwari, A. (2017). Handbook of solar energy. Singapor: Sprinter.Google Scholar
  82. Tiwari, G. N., Kupfermann, A., & Aggarwal, S. (1997). A new design for a double-condensing chamber solar still. Desalination, 114(2), 153–164.CrossRefGoogle Scholar
  83. Tleimat, B. W., & Howe, E. D. (1966). Nocturnal production of solar distillers. Solar Energy, 10(2), 61–66.CrossRefGoogle Scholar
  84. Tleimat, B. W., & Howe, E. D. (1969). Comparison of plastic and glass condensing covers for solar distillers. Solar Energy, 12(3), 293IN3297IN5303–296IN4302IN6304.CrossRefGoogle Scholar
  85. Tryk, D. A., Fujishima, A., & Honda, K. (2000). Recent topics in photoelectrochemistry: Achievements and future prospects. Electrochimica Acta, 45(15), 2363–2376.CrossRefGoogle Scholar
  86. Tyagi, V. V., Pathak Atin, K., Singh, H. M., Kothari, R., Selvaraj, J., & Pandey, A. K. (2016). Renewable energy scenario in Indian context: Vision and achievements. 4th IET clean energy and technology conference (Vol. 8, p. 85).  https://doi.org/10.1049/cp.2016.1342. ISBN: 978-1-78561-238-1.
  87. Velmurugan, K., Christraj, W., Kulasekharan, N., & Elango, T. (2016). Performance study of a dual-function Thermosyphon solar heating system. Arabian Journal for Science and Engineering, 41(5), 1835–1846.CrossRefGoogle Scholar
  88. Wang, C., Liu, H., & Qu, Y. (2013). TiO2-based photocatalytic process for purification of polluted water: Bridging fundamentals to applications. Journal of Nanomater, 14. Article ID 319637.Google Scholar
  89. Wolfrum, E. J., Huang, J., Blake, D. M., Maness, P. C., Huang, Z., Fiest, J., & Jacoby, W. A. (2002). Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environmental Science & Technology, 36(15), 3412–3419.CrossRefGoogle Scholar
  90. Yadav, Y. P. (1991). Analytical performance of a solar still integrated with a flat plate solar collector: Thermosiphon mode. Energy Conversion and Management, 31(3), 255–263.CrossRefGoogle Scholar
  91. Zhao, X., Wang, Z., & Tang, Q. (2010). Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing, China. Applied Thermal Engineering, 30(16), 2526–2536.CrossRefGoogle Scholar
  92. Zhou, H., & Smith, D. W. (2002). Advanced technologies in water and wastewater treatment. Journal of Environmental Engineering and Science, 1(4), 247–264.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Atin K. Pathak
    • 1
  • Kapil Chopra
    • 1
    • 2
  • Har Mohan Singh
    • 1
  • V. V. Tyagi
    • 1
  • Richa Kothari
    • 3
    • 4
  • Sanjeev Anand
    • 1
  • A. K. Pandey
    • 5
  1. 1.School of Energy ManagmentShri Mata Vaishno Devi UniversityKatraIndia
  2. 2.School of Mechanical EngineeringShri Mata Vaishno Devi UniversityKatraIndia
  3. 3.Department of Environmental SciencesCentral University of JammuJammu and KashmirIndia
  4. 4.Babasaheb Bhimrao Ambedkar UniversityLucknowIndia
  5. 5.Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Science and TechnologySunway UniversityPetaling JayaMalaysia

Personalised recommendations