Gastritis-Infection-Cancer Sequence of Epstein-Barr Virus-Associated Gastric Cancer

  • Masashi FukayamaEmail author
  • Akiko Kunita
  • Atsushi Kaneda
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1045)


Epstein-Barr virus-associated gastric cancer (EBVaGC) is a representative EBV-infected epithelial neoplasm, which is now included as one of the four subtypes of The Cancer Genome Atlas molecular classification of gastric cancer. In this review, we portray a gastritis-infection-cancer sequence of EBVaGC. This virus-associated type of gastric cancer demonstrates clonal growth of EBV-infected epithelial cells within the mucosa of atrophic gastritis. Its core molecular abnormality is the EBV-specific hyper-epigenotype of CpG island promoter methylation, which induces silencing of tumor suppressor genes. This is due to the infection-induced disruption of the balance between DNA methylation and DNA demethylation activities. Abnormalities in the host cell genome, including phosphatidylinositol-4,5-biphosphate 3-kinase catalytic subunit α (PIK3CA), AT-rich interaction domain 1A (ARID1A), and programmed death-ligand 1 (PD-L1), are associated with the development and progression of EBVaGC. Furthermore, posttranscriptional modulation affects the transformation processes of EBV-infected cells, such as epithelial mesenchymal transition and anti-apoptosis, via cellular and viral microRNAs (miRNAs). Once established, cancer cells of EBVaGC remodel their microenvironment, at least partly, via the delivery of exosomes containing cellular and viral miRNAs. After exosomes are incorporated, these molecules change the functions of stromal cells, tuning the microenvironment for EBVaGC. During this series of events, EBV hijacks and uses cellular machineries, such as DNA methylation and the miRNA delivery system. This portrait of gastritis-infection-cancer sequences highlights the survival strategies of EBV in the stomach epithelial cells and may be useful for the integration of therapeutic modalities against EBV-driven gastric cancer.


Gastric cancer EBVaGC EBER-ISH TCGA CpG methylation PIK3CA ARID1A PD-L1 microRNA 



This work was supported by Grants-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (26253021 to M.F.) and from the Core Research for Evolutionary Science and Technology program from the Japan Science and Technology Agency to A.K. and M.F.


  1. Abe H, Morikawa T, Saito R et al (2016) In Epstein-Barr virus-associated gastric carcinoma a high density of CD66b-positive tumor-associated neutrophils is associated with intestinal-type histology and low frequency of lymph node metastasis. Virchows Arch 468:539–548CrossRefPubMedGoogle Scholar
  2. Abe H, Kaneda A, Fukayama M (2015) Epstein-Barr virus associated gastric carcinoma: use of host cell machineries and somatic gene mutations. Pathobiology 82:212–223CrossRefPubMedGoogle Scholar
  3. Abe H, Maeda D, Hino R et al (2012) ARID1A expression loss in gastric cancer: pathway-dependent roles with and without Epstein-Barr virus infection and microsatellite instability. Virchows Arch 461:367–377CrossRefPubMedGoogle Scholar
  4. Bartfeld S, Bayram T, van de Wetering M et al (2015) In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148:126–136.e6CrossRefPubMedGoogle Scholar
  5. Burke AP, Yen TS, Shekitka KM et al (1990) Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod Pathol 3:377–380PubMedGoogle Scholar
  6. Burke JE, Perisic O, Masson GR et al (2012) Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc Natl Acad Sci U S A 109:15259–15264CrossRefPubMedPubMedCentralGoogle Scholar
  7. Camargo MC, Kim KM, Matsuo K et al (2016) Anti-Helicobacter pylori antibody profiles in Epstein-Barr virus (EBV)-positive and EBV-negative gastric cancer. Helicobacter 21:153–157CrossRefPubMedGoogle Scholar
  8. Choi H, Lee SK (2017) TAX1BP1 downregulation by EBV-miR-BART15-3p enhances chemosensitivity of gastric cancer cells to 5-FU. Arch Virol 162:369–377CrossRefPubMedGoogle Scholar
  9. Choi H, Lee H, Kim SR et al (2013) Epstein-Barr virus-encoded microRNA BART15-3p promotes cell apoptosis partially by targeting BRUCE. J Virol 87:8135–8144CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chong JM, Sakuma K, Sudo M et al (2002) Interleukin-1beta expression in human gastric carcinoma with Epstein-Barr virus infection. J Virol 76:6825–6831CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chong JM, Fukayama M, Hayashi Y et al (1994) Microsatellite instability in the progression of gastric carcinoma. Cancer Res 54:4595–4597PubMedGoogle Scholar
  12. Choy EY, Siu KL, Kok KH et al (2008) An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J Exp Med 205:2551–2560CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fang WL, Huang KH, Lan YT et al (2016) Mutations in PI3K/AKT pathway genes and amplifications of PIK3CA are associated with patterns of recurrence in gastric cancers. Oncotarget 7:6201–6220PubMedGoogle Scholar
  14. Fu DX, Tanhehco Y, Chen J et al (2008) Bortezomib-induced enzyme-targeted radiation therapy in herpesvirus-associated tumors. Nat Med 14:1118–1122CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fukayama M, Ushiku T (2011) Epstein-Barr virus-associated gastric carcinoma. Pathol Res Pract 207:529–537CrossRefPubMedGoogle Scholar
  16. Fukayama M, Hino R, Uozaki H (2008) Epstein-Barr virus and gastric carcinoma: virus-host interactions leading to carcinoma. Cancer Sci 99:1726–1733CrossRefPubMedGoogle Scholar
  17. Fukayama M, Hayashi Y, Iwasaki Y et al (1994) Epstein-Barr virus-associated gastric carcinoma and Epstein-Barr virus infection of the stomach. Lab Investig 71:73–81PubMedGoogle Scholar
  18. Funata S, Matsusaka K, Yamanaka R, Yamamoto S, Okabe A, Fukuyo M, Aburatani H, Fukayama M, Kaneda A (2017) Histone modification alteration coordinated with acquisition of promoter DNA methylation during Epstein-Barr virus infection. Oncotarget 8(33)Google Scholar
  19. Hammerschmidt W (2015) The epigenetic life cycle of Epstein-Barr virus. Curr Top Microbiol Immunol 390(Pt 1):103–117PubMedGoogle Scholar
  20. He B, Li W, Wu Y et al (2016) Epstein-Barr virus-encoded miR-BART6-3p inhibits cancer cell metastasis and invasion by targeting long non-coding RNA LOC553103. Cell Death Dis 7(9):e2353CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hino R, Uozaki H, Murakami N et al (2009) Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res 69:2766–2774CrossRefPubMedGoogle Scholar
  22. Ho Y, Tsao SW, Zeng M et al (2013) STAT3 as a therapeutic target for Epstein-Barr virus (EBV): associated nasopharyngeal carcinoma. Cancer Lett 330(2):141–149CrossRefPubMedGoogle Scholar
  23. Hui KF, Cheung AK, Choi CK et al (2016) Inhibition of class I histone deacetylases by romidepsin potently induces Epstein-Barr virus lytic cycle and mediates enhanced cell death with ganciclovir. Int J Cancer 138:125–136CrossRefPubMedGoogle Scholar
  24. Hutt-Fletcher LM (2016) The long and complicated relationship between Epstein-Barr Virus and epithelial cells. J Virol 91(1):pii: e01677-16PubMedPubMedCentralGoogle Scholar
  25. Ichimura T, Abe H, Morikawa T et al (2016) Low density of CD204-positive M2-type tumor-associated macrophages in Epstein-Barr virus-associated gastric cancer: a clinicopathologic study with digital image analysis. Hum Pathol 56:74–80CrossRefPubMedGoogle Scholar
  26. Imai S, Nishikawa J, Takada K (1998) Cell-to-cell contact as an efficient mode of Epstein-Barr virus infection of diverse human epithelial cells. J Virol 72:4371–4378PubMedPubMedCentralGoogle Scholar
  27. Imai S, Koizumi S, Sugiura M et al (1994) Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein. Proc Natl Acad Sci U S A 91:9131–9135CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kaizaki Y, Sakurai S, Chong JM et al (1999) Atrophic gastritis, Epstein-Barr virus infection, and Epstein-Barr virus-associated gastric carcinoma. Gastric Cancer 2:101–108CrossRefPubMedGoogle Scholar
  29. Kanda T, Furuse Y, Oshitani H et al (2016) Highly efficient CRISPR/Cas9-mediated cloning and functional characterization of gastric cancer-derived Epstein-Barr virus strains. J Virol 90:4383–4393CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kanda T, Miyata M, Kano M et al (2015) Clustered microRNAs of the Epstein-Barr virus cooperatively downregulate an epithelial cell-specific metastasis suppressor. J Virol 89:2684–2697CrossRefPubMedGoogle Scholar
  31. Kanda T, Horikoshi N, Murata T et al (2013) Interaction between basic residues of Epstein-Barr virus EBNA1 protein and cellular chromatin mediates viral plasmid maintenance. J Biol Chem 2013(288):24189–24199CrossRefGoogle Scholar
  32. Kaneda A, Matsusaka K, Aburatani H et al (2012) Epstein-Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res 72:3445–3450CrossRefPubMedGoogle Scholar
  33. Kang BW, Choi Y, Kwon OK et al (2017) High level of viral microRNA-BART20-5p expression is associated with worse survival of patients with Epstein-Barr virus-associated gastric cancer. Oncotarget 8:14988–14994PubMedPubMedCentralGoogle Scholar
  34. Kang GH, Lee S, Kim WH et al (2002) Epstein-Barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am J Pathol 160:787–794CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kataoka K, Shiraishi Y, Takeda Y et al (2016) Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature 534(7607):402–406CrossRefPubMedGoogle Scholar
  36. Khan G, Hashim MJ (2014) Global burden of deaths from Epstein-Barr virus attributable malignancies 1990–2010. Infect Agent Cancer 9:38CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kim H, Choi H, Lee SK (2015a) Epstein-Barr virus miR-BART20-5p regulates cell proliferation and apoptosis by targeting BAD. Cancer Lett 356(2 Pt B):733–742CrossRefPubMedGoogle Scholar
  38. Kim SY, Park C, Kim HJ et al (2015b) Deregulation of immune response genes in patients with Epstein-Barr virus-associated gastric cancer and outcomes. Gastroenterology 148:137–147.e9CrossRefPubMedGoogle Scholar
  39. Jung YJ, Choi H, Kim H et al (2014) MicroRNA miR-BART20-5p stabilizes Epstein-Barr virus latency by directly targeting BZLF1 and BRLF1. J Virol 88:9027–9037CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lee HG, Kim H, Kim EJ et al (2015) Targeted therapy for Epstein-Barr virus-associated gastric carcinoma using low-dose gemcitabine-induced lytic activation. Oncotarget 6:31018–31029PubMedPubMedCentralGoogle Scholar
  41. Lieberman PM (2013) Keeping it quiet: chromatin control of gammaherpesvirus latency. Nat Rev Microbiol 11:863–875CrossRefPubMedPubMedCentralGoogle Scholar
  42. Liu Y, Yang W, Pan Y et al (2016) Genome-wide analysis of Epstein-Barr virus (EBV) isolated from EBV-associated gastric carcinoma (EBVaGC). Oncotarget 7:4903–4914PubMedGoogle Scholar
  43. Lo AK, Dawson CW, Jin DY et al (2012) The pathological roles of BART miRNAs in nasopharyngeal carcinoma. J Pathol 227:392–403CrossRefPubMedGoogle Scholar
  44. McCracken KW, Cata EM, Crawford CM et al (2014) Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516:400–404CrossRefPubMedPubMedCentralGoogle Scholar
  45. Manzo T, Heslop HE, Rooney CM (2015) Antigen-specific T cell therapies for cancer. Hum Mol Genet 24(R1):R67–R73CrossRefPubMedPubMedCentralGoogle Scholar
  46. Marquitz AR, Mathur A, Edwards RH et al (2015) Host gene expression is regulated by two types of noncoding RNAs transcribed from the Epstein-Barr virus BamHI A rightward transcript region. J Virol 89:11256–11268CrossRefPubMedPubMedCentralGoogle Scholar
  47. Marquitz AR, Mathur A, Chugh PE et al (2014) Expression profile of microRNAs in Epstein-Barr virus-infected AGS gastric carcinoma cells. J Virol 88:1389–1393CrossRefPubMedPubMedCentralGoogle Scholar
  48. Marquitz AR, Mathur A, Nam CS et al (2011) The Epstein-Barr virus BART microRNAs target the pro-apoptotic protein Bim. Virology 412:392–400CrossRefPubMedPubMedCentralGoogle Scholar
  49. Matsusaka K, Funata S, Fukuyo M et al (2017) Epstein-Barr virus infection induces genome-wide de novo DNA methylation in non-neoplastic gastric epithelial cells. J Pathol 242(4):391–399CrossRefPubMedGoogle Scholar
  50. Matsusaka K, Kaneda A, Nagae G et al (2011) Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res 71:7187–7197CrossRefPubMedGoogle Scholar
  51. Meckes DG Jr (2015) Exosomal communication goes viral. J Virol 89:5200–5203CrossRefPubMedPubMedCentralGoogle Scholar
  52. Meckes DG Jr, Shair KH, Marquitz AR et al (2010) Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci U S A 107:20370–20375CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mrizak D, Martin N, Barjon C et al (2014) Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. J Natl Cancer Inst 107:363PubMedGoogle Scholar
  54. Murphy G, Pfeiffer R, Camargo MC et al (2009) Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterol 137:824–833CrossRefGoogle Scholar
  55. Namba-Fukuyo H, Funata S, Matsusaka K et al (2016) TET2 functions as a resistance factor against DNA methylation acquisition during Epstein-Barr virus infection. Oncotarget 7:81512–81526CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nanbo A, Kachi K, Yoshiyama H et al (2016) Epstein-Barr virus exploits host endocytic machinery for cell-to-cell viral transmission rather than a virological synapse. J Gen Virol 97:2989–3006CrossRefPubMedGoogle Scholar
  57. Nanbo A, Sugden A, Sugden B (2007) The coupling of synthesis and partitioning of EBV’s plasmid replicon is revealed in live cells. EMBO J 26:4252–4262CrossRefPubMedPubMedCentralGoogle Scholar
  58. Osawa T, Chong JM, Sudo M et al (2002) Reduced expression and promoter methylation of p16 gene in Epstein-Barr virus-associated gastric carcinoma. Jpn J Cancer Res 93:1195–1200CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107:6328–6333CrossRefPubMedPubMedCentralGoogle Scholar
  60. Qiu J, Smith P, Leahy L et al (2015) The Epstein-Barr virus encoded BART miRNAs potentiate tumor growth in vivo. PLoS Pathog 11:e1004561CrossRefPubMedPubMedCentralGoogle Scholar
  61. Saito R, Abe H, Kunita A et al (2017) Overexpression and gene amplification of PD-L1 in cancer cells and PD-L1(+) immune cells in Epstein-Barr virus-associated gastric cancer: the prognostic implications. Mod Pathol 30:427–439CrossRefPubMedGoogle Scholar
  62. Saju P, Murata-Kamiya N, Hayashi T et al (2016) Host SHP1 phosphatase antagonizes helicobacter pylori CagA and can be downregulated by Epstein-Barr virus. Nat Microbiol 1:16026CrossRefPubMedGoogle Scholar
  63. Shannon-Lowe C, Adland E, Bell AI et al (2009) Features distinguishing Epstein-Barr virus infections of epithelial cells and B cells: viral genome expression, genome maintenance, and genome amplification. J Virol 83:7749–7760CrossRefPubMedPubMedCentralGoogle Scholar
  64. Shibata D, Tokunaga M, Uemura Y et al (1991) Association of Epstein-Barr virus with undifferentiated gastric carcinomas with intense lymphoid infiltration. Lymphoepithelioma-like carcinoma. Am J Pathol 139:469–474Google Scholar
  65. Shibata D, Weiss LM (1992) Epstein-Barr virus-associated gastric adenocarcinoma. Am J Pathol 140:769–774PubMedPubMedCentralGoogle Scholar
  66. Shimizu T, Marusawa H, Matsumoto Y et al (2014) Accumulation of somatic mutations in TP53 in gastric epithelium with Helicobacter pylori infection. Gastroenterology 147:407–417.e3CrossRefPubMedGoogle Scholar
  67. Shinozaki A, Sakatani T, Ushiku T et al (2010) Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res 70:4719–4727CrossRefPubMedGoogle Scholar
  68. Shinozaki-Ushiku A, Kunita A, Fukayama M (2015a) Update on Epstein-Barr virus and gastric cancer (review). Int J Oncol 46:1421–1434CrossRefPubMedGoogle Scholar
  69. Shinozaki-Ushiku A, Kunita A, Isogai M et al (2015b) Profiling of virus-encoded microRNAs in Epstein-Barr virus-associated gastric carcinoma and their roles in gastric carcinogenesis. J Virol 89:5581–5591CrossRefPubMedPubMedCentralGoogle Scholar
  70. Shukla SK, Prasad KN, Tripathi A et al (2012) Expression profile of latent and lytic transcripts of Epstein-Barr virus in patients with gastroduodenal diseases: a study from northern India. J Med Virol 84:1289–1297CrossRefPubMedGoogle Scholar
  71. Song HJ, Srivastava A, Lee J et al (2010) Host inflammatory response predicts survival of patients with Epstein-Barr virus-associated gastric carcinoma. Gastroenterology 139:84–92.e82CrossRefPubMedGoogle Scholar
  72. Strong MJ, Xu G, Coco J et al (2013) Differences in gastric carcinoma microenvironment stratify according to EBV infection intensity: implications for possible immune adjuvant therapy. PLoS Pathog 9:e1003341CrossRefPubMedPubMedCentralGoogle Scholar
  73. Su S, Zou Z, Chen F et al (2016) CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology 6:e1249558CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sugiura M, Imai S, Tokunaga M et al (1996) Transcriptional analysis of Epstein-Barr virus gene expression in EBV-positive gastric carcinoma: unique viral latency in the tumour cells. Br J Cancer 74:625–631CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tashiro Y, Arikawa J, Itho T et al (1998) Clinico–pathological findings of Epstein–Barr virus–related gastric cancer. In: Osato T, Takada K, Tokunaga M (eds) Epstein–Barr Virus and Human Cancer (Gann Monograph on Cancer Research, No 45). S. Karger Ag, Barsel, pp 87–97Google Scholar
  76. Taylor GS, Steven NM (2016) Therapeutic vaccination strategies to treat nasopharyngeal carcinoma. Chin Clin Oncol 5:23CrossRefPubMedGoogle Scholar
  77. Taylor GS, Jia H, Harrington K et al (2014) A recombinant modified vaccinia ankara vaccine encoding Epstein-Barr Virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer. Clin Cancer Res 20:5009–5022CrossRefPubMedPubMedCentralGoogle Scholar
  78. The Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513:202–209CrossRefGoogle Scholar
  79. Tsai CY, Liu YY, Liu KH et al (2017) Comprehensive profiling of virus microRNAs of Epstein-Barr virus-associated gastric carcinoma: highlighting the interactions of ebv-Bart9 and host tumor cells. J Gastroenterol Hepatol 32:82–91CrossRefPubMedGoogle Scholar
  80. Tsang CM, Yip YL, Lo KW et al (2012) Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells. Proc Natl Acad Sci U S A 2012(109):E3473–E3482CrossRefGoogle Scholar
  81. Uozaki H, Fukayama M (2008) Epstein-Barr virus and gastric carcinoma-viral carcinogenesis through epigenetic mechanisms. Int J Clin Exp Pathol 1:198–216PubMedPubMedCentralGoogle Scholar
  82. Wang K, Yuen ST, Xu J et al (2014) Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet 46:573–582CrossRefGoogle Scholar
  83. Wang K, Kan J, Yuen ST et al (2011) Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet 43:1219–1223CrossRefPubMedGoogle Scholar
  84. Yamamoto S, Tsuda H, Takano M et al (2012) Loss of ARID1A protein expression occurs as an early event in ovarian clear-cell carcinoma development and frequently coexists with PIK3CA mutations. Mod Pathol 2012(25):615–624CrossRefGoogle Scholar
  85. Yau TO, Tang CM, Yu J (2014) Epigenetic dysregulation in Epstein-Barr virus-associated gastric carcinoma: disease and treatments. World J Gastroenterol 20:6448–6456CrossRefPubMedPubMedCentralGoogle Scholar
  86. Ye SB, Li ZL, Luo DH et al (2014) Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 5:5439–5452CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zhang NN, Chen JN, Xiao L et al (2015) Accumulation mechanisms of CD4(+)CD25(+)FOXP3(+) regulatory T cells in EBV-associated gastric carcinoma. Sci Rep 5:18057CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zhang Q, Yan HB, Wang J et al (2016) Chromatin remodeling gene AT-rich interactive domain-containing protein 1A suppresses gastric cancer cell proliferation by targeting PIK3CA and PDK1. Oncotarget 7:46127–46141PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Masashi Fukayama
    • 1
    Email author
  • Akiko Kunita
    • 1
  • Atsushi Kaneda
    • 2
  1. 1.Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
  2. 2.Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan

Personalised recommendations