Advertisement

Structural Aspects of Betaherpesvirus-Encoded Proteins

  • Mitsuhiro Nishimura
  • Yasuko Mori
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1045)

Abstract

Betaherpesvirus possesses a large genome DNA with a lot of open reading frames, indicating abundance in the variety of viral protein factors. Because the complicated pathogenicity of herpesvirus reflects the combined functions of these factors, analyses of individual proteins are the fundamental steps to comprehensively understand about the viral life cycle and the pathogenicity. In this chapter, structural aspects of the betaherpesvirus-encoded proteins are introduced. Betaherpesvirus-encoded proteins of which structural information is available were summarized and subcategorized into capsid proteins, tegument proteins, nuclear egress complex proteins, envelope glycoproteins, enzymes, and immune-modulating factors. Structure of capsid proteins are analyzed in capsid by electron cryomicroscopy at quasi-atomic resolution. Structural information of teguments is limited, but a recent crystallographic analysis of an essential tegument protein of human herpesvirus 6B is introduced. As for the envelope glycoproteins, crystallographic analysis of glycoprotein gB has been done, revealing the fine-tuned structure and the distribution of its antigenic domains. gH/gL structure of betaherpesvirus is not available yet, but the overall shape and the spatial arrangement of the accessory proteins are analyzed by electron microscopy. Nuclear egress complex was analyzed from the structural perspective in 2015, with the structural analysis of cytomegalovirus UL50/UL53. The category “enzymes” includes the viral protease, DNA polymerase and terminase for which crystallographic analyses have been done. The immune-modulating factors are viral ligands or receptors for immune regulating factors of host immune cells, and their communications with host immune molecules are demonstrated in the aspect of molecular structure.

Keywords

Betaherpesvirus Protein structure X-ray crystallography Electron cryomicroscopy Capsid Tegument Glycoprotein Immune modulation 

References

  1. Adams EJ, Juo ZS, Venook RT, Boulanger MJ, Arase H, Lanier LL, Garcia KC (2007) Structural elucidation of the m157 mouse cytomegalovirus ligand for Ly49 natural killer cell receptors. Proc Natl Acad Sci USA 104(24):10128–10133. 0703735104 [pii]  https://doi.org/10.1073/pnas.0703735104 CrossRefGoogle Scholar
  2. Akkapaiboon P, Mori Y, Sadaoka T, Yonemoto S, Yamanishi K (2004) Intracellular processing of human herpesvirus 6 glycoproteins Q1 and Q2 into tetrameric complexes expressed on the viral envelope. J Virol 78(15):7969–7983.  https://doi.org/10.1128/JVI.78.15.7969-7983.2004 78/15/7969 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  3. Appleton BA, Loregian A, Filman DJ, Coen DM, Hogle JM (2004) The cytomegalovirus DNA polymerase subunit UL44 forms a C clamp-shaped dimer. Mol Cell 15(2):233–244.  https://doi.org/10.1016/j.molcel.2004.06.018 S1097-2765(04)00351-X [pii]CrossRefPubMedGoogle Scholar
  4. Appleton BA, Brooks J, Loregian A, Filman DJ, Coen DM, Hogle JM (2006) Crystal structure of the cytomegalovirus DNA polymerase subunit UL44 in complex with the C terminus from the catalytic subunit. Differences in structure and function relative to unliganded UL44. J Biol Chem 281(8):5224–5232. M506900200 [pii]  https://doi.org/10.1074/jbc.M506900200 CrossRefPubMedGoogle Scholar
  5. Backovic M, Longnecker R, Jardetzky TS (2009) Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B. Proc Natl Acad Sci USA 106(8):2880–2885. doi: https://doi.org/10.1073/pnas.0810530106 0810530106 [pii]
  6. Batra R, Khayat R, Tong L (2001) Molecular mechanism for dimerization to regulate the catalytic activity of human cytomegalovirus protease. Nat Struct Biol 8(9):810–817.  https://doi.org/10.1038/nsb0901-810 nsb0901-810 [pii]
  7. Berry R, Vivian JP, Deuss FA, Balaji GR, Saunders PM, Lin J, Littler DR, Brooks AG, Rossjohn J (2014) The structure of the cytomegalovirus-encoded m04 glycoprotein, a prototypical member of the m02 family of immunoevasins. J Biol Chem 289(34):23753–23763. doi: https://doi.org/10.1074/jbc.M114.584128 M114.584128 [pii]
  8. Bigalke JM, Heldwein EE (2015) Structural basis of membrane budding by the nuclear egress complex of herpesviruses. EMBO J 34(23):2921–2936.  https://doi.org/10.15252/embj.201592359 embj.201592359 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bigalke JM, Heuser T, Nicastro D, Heldwein EE (2014) Membrane deformation and scission by the HSV-1 nuclear egress complex. Nat Commun 5:4131.  https://doi.org/10.1038/ncomms5131 ncomms5131 [pii]
  10. Bowman BR, Baker ML, Rixon FJ, Chiu W, Quiocho FA (2003) Structure of the herpesvirus major capsid protein. EMBO J 22(4):757–765.  https://doi.org/10.1093/emboj/cdg086 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A, Feinberg EN, Angelini A, Waghray D, Dror RO, Ploegh HL, Garcia KC (2015) Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347(6226):1113–1117.  https://doi.org/10.1126/science.aaa5026 347/6226/1113 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  12. Burke HG, Heldwein EE (2015) Crystal structure of the human cytomegalovirus glycoprotein B. PLoS Pathog 11(10):e1005227.  https://doi.org/10.1371/journal.ppat.1005227 PPATHOGENS-D-15-01758 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  13. Butcher SJ, Aitken J, Mitchell J, Gowen B, Dargan DJ (1998) Structure of the human cytomegalovirus B capsid by electron cryomicroscopy and image reconstruction. J Struct Biol 124(1):70–76. S1047-8477(98)94055-2 [pii]  https://doi.org/10.1006/jsbi.1998.4055 CrossRefPubMedGoogle Scholar
  14. Chandramouli S, Ciferri C, Nikitin PA, Calo S, Gerrein R, Balabanis K, Monroe J, Hebner C, Lilja AE, Settembre EC, Carfi A (2015) Structure of HCMV glycoprotein B in the postfusion conformation bound to a neutralizing human antibody. Nat Commun 6:8176.  https://doi.org/10.1038/ncomms9176 ncomms9176 [pii]
  15. Chen P, Tsuge H, Almassy RJ, Gribskov CL, Katoh S, Vanderpool DL, Margosiak SA, Pinko C, Matthews DA, Kan CC (1996) Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad. Cell 86(5):835–843 doi:S0092-8674(00)80157-9 [pii]Google Scholar
  16. Chen DH, Jiang H, Lee M, Liu F, Zhou ZH (1999) Three-dimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus. Virology 260(1):10–16.  https://doi.org/10.1006/viro.1999.9791 S0042-6822(99)99791-X [pii]CrossRefPubMedGoogle Scholar
  17. Chowdary TK, Cairns TM, Atanasiu D, Cohen GH, Eisenberg RJ, Heldwein EE (2010) Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL. Nat Struct Mol Biol 17(7):882–888.  https://doi.org/10.1038/nsmb.1837 nsmb.1837 [pii]CrossRefGoogle Scholar
  18. Ciferri C, Chandramouli S, Donnarumma D, Nikitin PA, Cianfrocco MA, Gerrein R, Feire AL, Barnett SW, Lilja AE, Rappuoli R, Norais N, Settembre EC, Carfi A (2015a) Structural and biochemical studies of HCMV gH/gL/gO and Pentamer reveal mutually exclusive cell entry complexes. Proc Natl Acad Sci USA 112(6):1767–1772.  https://doi.org/10.1073/pnas.1424818112 1424818112 [pii]CrossRefGoogle Scholar
  19. Ciferri C, Chandramouli S, Leitner A, Donnarumma D, Cianfrocco MA, Gerrein R, Friedrich K, Aggarwal Y, Palladino G, Aebersold R, Norais N, Settembre EC, Carfi A (2015b) Antigenic characterization of the HCMV gH/gL/gO and Pentamer cell entry complexes reveals binding sites for potently neutralizing human antibodies. PLoS Pathog 11(10):e1005230.  https://doi.org/10.1371/journal.ppat.1005230 PPATHOGENS-D-15-01403 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dai X, Yu X, Gong H, Jiang X, Abenes G, Liu H, Shivakoti S, Britt WJ, Zhu H, Liu F, Zhou ZH (2013) The smallest capsid protein mediates binding of the essential tegument protein pp150 to stabilize DNA-containing capsids in human cytomegalovirus. PLoS Pathog 9(8):e1003525.  https://doi.org/10.1371/journal.ppat.1003525 PPATHOGENS-D-12-01355 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dai X, Gong D, Xiao Y, Wu TT, Sun R, Zhou ZH (2015) CryoEM and mutagenesis reveal that the smallest capsid protein cements and stabilizes Kaposi's sarcoma-associated herpesvirus capsid. Proc Natl Acad Sci USA 112(7):E649–E656.  https://doi.org/10.1073/pnas.1420317112 1420317112 [pii]CrossRefGoogle Scholar
  22. Gan L, Speir JA, Conway JF, Lander G, Cheng N, Firek BA, Hendrix RW, Duda RL, Liljas L, Johnson JE (2006) Capsid conformational sampling in HK97 maturation visualized by X-ray crystallography and cryo-EM. Structure 14(11):1655–1665. S0969-2126(06)00392-3 [pii]  https://doi.org/10.1016/j.str.2006.09.006 CrossRefPubMedGoogle Scholar
  23. Gewurz BE, Gaudet R, Tortorella D, Wang EW, Ploegh HL, Wiley DC (2001) Antigen presentation subverted: structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc Natl Acad Sci USA 98(12):6794–6799.  https://doi.org/10.1073/pnas.121172898 98/12/6794 [pii]CrossRefGoogle Scholar
  24. Hagen C, Dent KC, Zeev-Ben-Mordehai T, Grange M, Bosse JB, Whittle C, Klupp BG, Siebert CA, Vasishtan D, Bauerlein FJ, Cheleski J, Werner S, Guttmann P, Rehbein S, Henzler K, Demmerle J, Adler B, Koszinowski U, Schermelleh L, Schneider G, Enquist LW, Plitzko JM, Mettenleiter TC, Grunewald K (2015) Structural basis of vesicle formation at the inner nuclear membrane. Cell 163(7):1692–1701.  https://doi.org/10.1016/j.cell.2015.11.029 S0092-8674(15)01548-2 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  25. Heldwein EE (2016) gH/gL supercomplexes at early stages of herpesvirus entry. Curr Opin Virol 18:1–8.  https://doi.org/10.1016/j.coviro.2016.01.010 S1879-6257(16)00013-4 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  26. Heldwein EE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC (2006) Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313(5784):217–220. 313/5784/217 [pii]  https://doi.org/10.1126/science.1126548 CrossRefPubMedGoogle Scholar
  27. Huet A, Makhov AM, Huffman JB, Vos M, Homa FL, Conway JF (2016) Extensive subunit contacts underpin herpesvirus capsid stability and interior-to-exterior allostery. Nat Struct Mol Biol 23(6):531–539.  https://doi.org/10.1038/nsmb.3212 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hui WH, Tang Q, Liu H, Atanasov I, Liu F, Zhu H, Zhou ZH (2013) Protein interactions in the murine cytomegalovirus capsid revealed by cryoEM. Protein Cell 4(11):833–845.  https://doi.org/10.1007/s13238-013-3060-7 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jones BC, Logsdon NJ, Josephson K, Cook J, Barry PA, Walter MR (2002) Crystal structure of human cytomegalovirus IL-10 bound to soluble human IL-10R1. Proc Natl Acad Sci USA 99(14):9404–9409.  https://doi.org/10.1073/pnas.152147499 152147499 [pii]
  30. Khayat R, Batra R, Qian C, Halmos T, Bailey M, Tong L (2003) Structural and biochemical studies of inhibitor binding to human cytomegalovirus protease. Biochemistry 42(4):885–891.  https://doi.org/10.1021/bi027045s CrossRefPubMedGoogle Scholar
  31. Klingl S, Scherer M, Stamminger T, Muller YA (2015) Controlled crystal dehydration triggers a space-group switch and shapes the tertiary structure of cytomegalovirus immediate-early 1 (IE1) protein. Acta Crystallogr D Biol Crystallogr 71(Pt 7):1493–1504  https://doi.org/10.1107/S1399004715008792 S1399004715008792 [pii]CrossRefGoogle Scholar
  32. Komazin-Meredith G, Petrella RJ, Santos WL, Filman DJ, Hogle JM, Verdine GL, Karplus M, Coen DM (2008) The human cytomegalovirus UL44 C clamp wraps around DNA. Structure 16(8):1214–1225.  https://doi.org/10.1016/j.str.2008.05.008 S0969-2126(08)00243-8 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  33. Krueger GRF, Ablashi DV (2006) Human herpesvirus-6 general virology, epidemiology and clinical pathology, Perspectives in medical virology. Elsevier, BostonGoogle Scholar
  34. Leigh KE, Sharma M, Mansueto MS, Boeszoermenyi A, Filman DJ, Hogle JM, Wagner G, Coen DM, Arthanari H (2015) Structure of a herpesvirus nuclear egress complex subunit reveals an interaction groove that is essential for viral replication. Proc Natl Acad Sci USA 112(29):9010–9015.  https://doi.org/10.1073/pnas.1511140112 1511140112 [pii]CrossRefGoogle Scholar
  35. Lye MF, Sharma M, El Omari K, Filman DJ, Schuermann JP, Hogle JM, Coen DM (2015) Unexpected features and mechanism of heterodimer formation of a herpesvirus nuclear egress complex. EMBO J 34(23):2937–2952.  https://doi.org/10.15252/embj.201592651 embj.201592651 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mahmoud NF, Kawabata A, Tang H, Wakata A, Wang B, Serada S, Naka T, Mori Y (2016) Human herpesvirus 6 U11 protein is critical for virus infection. Virology 489:151–157.  https://doi.org/10.1016/j.virol.2015.12.011 S0042-6822(15)00532-2 [pii]CrossRefPubMedGoogle Scholar
  37. Mans J, Natarajan K, Balbo A, Schuck P, Eikel D, Hess S, Robinson H, Simic H, Jonjic S, Tiemessen CT, Margulies DH (2007) Cellular expression and crystal structure of the murine cytomegalovirus major histocompatibility complex class I-like glycoprotein, m153. J Biol Chem 282(48):35247–35258. M706782200 [pii]  https://doi.org/10.1074/jbc.M706782200 CrossRefPubMedGoogle Scholar
  38. Matsuura H, Kirschner AN, Longnecker R, Jardetzky TS (2010) Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex. Proc Natl Acad Sci USA 107(52):22641–22646.  https://doi.org/10.1073/pnas.1011806108 1011806108 [pii]CrossRefGoogle Scholar
  39. Mori Y, Akkapaiboon P, Yonemoto S, Koike M, Takemoto M, Sadaoka T, Sasamoto Y, Konishi S, Uchiyama Y, Yamanishi K (2004) Discovery of a second form of tripartite complex containing gH-gL of human herpesvirus 6 and observations on CD46. J Virol 78(9):4609–4616CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mori J, Kawabata A, Tang H, Tadagaki K, Mizuguchi H, Kuroda K, Mori Y (2015a) Human Herpesvirus-6 U14 induces cell-cycle arrest in G2/M phase by associating with a cellular protein, EDD. PLoS One 10(9):e0137420.  https://doi.org/10.1371/journal.pone.0137420 PONE-D-15-14067 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mori J, Tang H, Kawabata A, Koike M, Mori Y (2015b) Human herpesvirus 6A U14 is important for virus maturation. J Virol 90(3):1677–1681.  https://doi.org/10.1128/JVI.02492-15 JVI.02492-15 [pii]CrossRefPubMedGoogle Scholar
  42. Muller S, Zocher G, Steinle A, Stehle T (2010) Structure of the HCMV UL16-MICB complex elucidates select binding of a viral immunoevasin to diverse NKG2D ligands. PLoS Pathog 6(1):e1000723.  https://doi.org/10.1371/journal.ppat.1000723 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nadal M, Mas PJ, Blanco AG, Arnan C, Sola M, Hart DJ, Coll M (2010) Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain. Proc Natl Acad Sci USA 107(37):16078–16083.  https://doi.org/10.1073/pnas.1007144107 1007144107 [pii]CrossRefGoogle Scholar
  44. Natarajan K, Hicks A, Mans J, Robinson H, Guan R, Mariuzza RA, Margulies DH (2006) Crystal structure of the murine cytomegalovirus MHC-I homolog m144. J Mol Biol 358(1):157–171. S0022-2836(06)00109-4 [pii]  https://doi.org/10.1016/j.jmb.2006.01.068 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nemcovicova I, Zajonc DM (2014) The structure of cytomegalovirus immune modulator UL141 highlights structural Ig-fold versatility for receptor binding. Acta Crystallogr D Biol Crystallogr 70(Pt 3):851–862.  https://doi.org/10.1107/S1399004713033750 S1399004713033750 [pii]CrossRefPubMedCentralGoogle Scholar
  46. Nemcovicova I, Benedict CA, Zajonc DM (2013) Structure of human cytomegalovirus UL141 binding to TRAIL-R2 reveals novel, non-canonical death receptor interactions. PLoS Pathog 9(3):e1003224.  https://doi.org/10.1371/journal.ppat.1003224 PPATHOGENS-D-12-02360 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612.  https://doi.org/10.1002/jcc.20084 CrossRefPubMedGoogle Scholar
  48. Qiu X, Culp JS, DiLella AG, Hellmig B, Hoog SS, Janson CA, Smith WW, Abdel-Meguid SS (1996) Unique fold and active site in cytomegalovirus protease. Nature 383(6597):275–279.  https://doi.org/10.1038/383275a0 CrossRefPubMedGoogle Scholar
  49. Roche S, Rey FA, Gaudin Y, Bressanelli S (2007) Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science 315(5813):843–848. 315/5813/843 [pii]  https://doi.org/10.1126/science.1135710 CrossRefPubMedGoogle Scholar
  50. Santoro F, Kennedy PE, Locatelli G, Malnati MS, Berger EA, Lusso P (1999) CD46 is a cellular receptor for human herpesvirus 6. Cell 99(7):817–827 doi:S0092-8674(00)81678-5 [pii]Google Scholar
  51. Sathiyamoorthy K, Jiang J, Hu YX, Rowe CL, Mohl BS, Chen J, Jiang W, Mellins ED, Longnecker R, Zhou ZH, Jardetzky TS (2014) Assembly and architecture of the EBV B cell entry triggering complex. PLoS Pathog 10(8):e1004309.  https://doi.org/10.1371/journal.ppat.1004309 PPATHOGENS-D-14-00440 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sathiyamoorthy K, Hu YX, Mohl BS, Chen J, Longnecker R, Jardetzky TS (2016) Structural basis for Epstein-Barr virus host cell tropism mediated by gp42 and gHgL entry glycoproteins. Nat Commun 7:13557.  https://doi.org/10.1038/ncomms13557 ncomms13557 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  53. Scherer M, Klingl S, Sevvana M, Otto V, Schilling EM, Stump JD, Muller R, Reuter N, Sticht H, Muller YA, Stamminger T (2014) Crystal structure of cytomegalovirus IE1 protein reveals targeting of TRIM family member PML via coiled-coil interactions. PLoS Pathog 10(11):e1004512.  https://doi.org/10.1371/journal.ppat.1004512 PPATHOGENS-D-14-01596 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sgourakis NG, Natarajan K, Ying J, Vogeli B, Boyd LF, Margulies DH, Bax A (2014) The structure of mouse cytomegalovirus m04 protein obtained from sparse NMR data reveals a conserved fold of the m02-m06 viral immune modulator family. Structure 22(9):1263–1273.  https://doi.org/10.1016/j.str.2014.05.018 S0969-2126(14)00207-X [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  55. Shieh HS, Kurumbail RG, Stevens AM, Stegeman RA, Sturman EJ, Pak JY, Wittwer AJ, Palmier MO, Wiegand RC, Holwerda BC, Stallings WC (1996) Three-dimensional structure of human cytomegalovirus protease. Nature 383(6597):279–282.  https://doi.org/10.1038/383279a0 CrossRefPubMedGoogle Scholar
  56. Spindler N, Diestel U, Stump JD, Wiegers AK, Winkler TH, Sticht H, Mach M, Muller YA (2014) Structural basis for the recognition of human cytomegalovirus glycoprotein B by a neutralizing human antibody. PLoS Pathog 10(10):e1004377.  https://doi.org/10.1371/journal.ppat.1004377 PPATHOGENS-D-14-00683 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  57. Takemoto M, Koike M, Mori Y, Yonemoto S, Sasamoto Y, Kondo K, Uchiyama Y, Yamanishi K (2005) Human herpesvirus 6 open reading frame U14 protein and cellular p53 interact with each other and are contained in the virion. J Virol 79(20):13037–13046. 79/20/13037 [pii]  https://doi.org/10.1128/JVI.79.20.13037-13046.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tang H, Serada S, Kawabata A, Ota M, Hayashi E, Naka T, Yamanishi K, Mori Y (2013) CD134 is a cellular receptor specific for human herpesvirus-6B entry. Proc Natl Acad Sci USA 110(22):9096–9099.  https://doi.org/10.1073/pnas.1305187110 1305187110 [pii]CrossRefGoogle Scholar
  59. Tong L, Qian C, Massariol MJ, Bonneau PR, Cordingley MG, Lagace L (1996) A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease. Nature 383(6597):272–275.  https://doi.org/10.1038/383272a0 CrossRefPubMedGoogle Scholar
  60. Tong L, Qian C, Massariol MJ, Deziel R, Yoakim C, Lagace L (1998) Conserved mode of peptidomimetic inhibition and substrate recognition of human cytomegalovirus protease. Nat Struct Biol 5(9):819–826.  https://doi.org/10.1038/1860 CrossRefPubMedGoogle Scholar
  61. Trus BL, Gibson W, Cheng N, Steven AC (1999) Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites. J Virol 73(3):2181–2192PubMedPubMedCentralGoogle Scholar
  62. Wagner CS, Rolle A, Cosman D, Ljunggren HG, Berndt KD, Achour A (2007) Structural elements underlying the high binding affinity of human cytomegalovirus UL18 to leukocyte immunoglobulin-like receptor-1. J Mol Biol 373(3):695–705. S0022-2836(07)01092-3 [pii]  https://doi.org/10.1016/j.jmb.2007.08.020 CrossRefPubMedGoogle Scholar
  63. Walzer SA, Egerer-Sieber C, Sticht H, Sevvana M, Hohl K, Milbradt J, Muller YA, Marschall M (2015) Crystal structure of the human cytomegalovirus pUL50-pUL53 Core nuclear egress complex provides insight into a unique assembly scaffold for virus-host protein interactions. J Biol Chem 290(46):27452–27458.  https://doi.org/10.1074/jbc.C115.686527 C115.686527 [pii]CrossRefPubMedGoogle Scholar
  64. Wang R, Natarajan K, Revilleza MJ, Boyd LF, Zhi L, Zhao H, Robinson H, Margulies DH (2012) Structural basis of mouse cytomegalovirus m152/gp40 interaction with RAE1gamma reveals a paradigm for MHC/MHC interaction in immune evasion. Proc Natl Acad Sci USA 109(51):E3578–E3587.  https://doi.org/10.1073/pnas.1214088109 1214088109 [pii]CrossRefGoogle Scholar
  65. Wang B, Nishimura M, Tang H, Kawabata A, Mahmoud NF, Khanlari Z, Hamada D, Tsuruta H, Mori Y (2016) Crystal structure of human herpesvirus 6B tegument protein U14. PLoS Pathog 12(5):e1005594.  https://doi.org/10.1371/journal.ppat.1005594 PPATHOGENS-D-15-02987 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yang Z, Bjorkman PJ (2008) Structure of UL18, a peptide-binding viral MHC mimic, bound to a host inhibitory receptor. Proc Natl Acad Sci USA 105(29):10095–10100.  https://doi.org/10.1073/pnas.0804551105 0804551105 [pii]
  67. Zeev-Ben-Mordehai T, Weberruss M, Lorenz M, Cheleski J, Hellberg T, Whittle C, El Omari K, Vasishtan D, Dent KC, Harlos K, Franzke K, Hagen C, Klupp BG, Antonin W, Mettenleiter TC, Grunewald K (2015) Crystal structure of the herpesvirus nuclear egress complex provides insights into inner nuclear membrane remodeling. Cell Rep 13(12):2645–2652.  https://doi.org/10.1016/j.celrep.2015.11.008 S2211-1247(15)01295-4 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zeev-Ben-Mordehai T, Vasishtan D, Hernandez Duran A, Vollmer B, White P, Prasad Pandurangan A, Siebert CA, Topf M, Grunewald K (2016) Two distinct trimeric conformations of natively membrane-anchored full-length herpes simplex virus 1 glycoprotein B. Proc Natl Acad Sci USA 113(15):4176–4181.  https://doi.org/10.1073/pnas.1523234113 1523234113 [pii]CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Division of Clinical VirologyKobe University Graduate School of MedicineKobeJapan
  2. 2.Division of Clinical Virology, Center for Infectious DiseasesKobe University Graduate School of MedicineKobeJapan

Personalised recommendations