Advertisement

Chromosomal Integration by Human Herpesviruses 6A and 6B

  • Louis Flamand
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1045)

Abstract

Upon infection and depending on the infected cell type, human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) can replicate or enter a state of latency. HHV-6A and HHV-6B can integrate their genomes into host chromosomes as one way to establish latency. Viral integration takes place near the subtelomeric/telomeric junction of chromosomes. When HHV-6 infection and integration occur in gametes, the virus can be genetically transmitted. Inherited chromosomally integrated HHV-6 (iciHHV-6)-positive individuals carry one integrated HHV-6 copy per somatic cell. The prevalence of iciHHV-6+ individuals varies between 0.6% and 2%, depending on the geographical region sampled. In this chapter, the mechanisms leading to viral integration and reactivation from latency, as well as some of the biological and medical consequences associated with iciHHV-6, were discussed.

Keywords

Chromosomal integration Telomeres HHV-6 iciHHV-6 Chromosomes Telomeric motifs 

References

  1. Achour A, Malet I, Deback C, Bonnafous P, Boutolleau D, Gautheret-Dejean A, Agut H (2009) Length variability of telomeric repeat sequences of human herpesvirus 6 DNA. J Virol Methods 159 (1):127–130. S0166-0934(09)00104-9 [pii]  https://doi.org/10.1016/j.jviromet.2009.03.002 CrossRefPubMedGoogle Scholar
  2. Agut H, Bonnafous P, Gautheret-Dejean A (2015) Laboratory and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev 28(2):313–335.  https://doi.org/10.1128/CMR.00122-14 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anand RP, Shah KA, Niu H, Sung P, Mirkin SM, Freudenreich CH (2012) Overcoming natural replication barriers: differential helicase requirements. Nucleic Acids Res 40(3):1091–1105.  https://doi.org/10.1093/nar/gkr836 CrossRefPubMedGoogle Scholar
  4. Aoki J, Numata A, Yamamoto E, Fujii E, Tanaka M, Kanamori H (2015) Impact of human Herpesvirus-6 reactivation on outcomes of allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 21(11):2017–2022.  https://doi.org/10.1016/j.bbmt.2015.07.022 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arbuckle JH, Medveczky PG (2011) The molecular biology of human herpesvirus-6 latency and telomere integration. Microbes Infect 13(8–9):731–741.  https://doi.org/10.1016/j.micinf.2011.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arbuckle JH, Medveczky MM, Luka J, Hadley SH, Luegmayr A, Ablashi D, Lund TC, Tolar J, De Meirleir K, Montoya JG, Komaroff AL, Ambros PF, Medveczky PG (2010) The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc Natl Acad Sci USA 107(12):5563–5568.  https://doi.org/10.1073/pnas.0913586107 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Awadalla P, Boileau C, Payette Y, Idaghdour Y, Goulet JP, Knoppers B, Hamet P, Laberge C, Project CA (2013) Cohort profile of the CARTaGENE study: Quebec’s population-based biobank for public health and personalized genomics. Int J Epidemiol 42(5):1285–1299.  https://doi.org/10.1093/ije/dys160 CrossRefPubMedGoogle Scholar
  8. Bell AJ, Gallagher A, Mottram T, Lake A, Kane EV, Lightfoot T, Roman E, Jarrett RF (2014) Germ-line transmitted, chromosomally integrated HHV-6 and classical Hodgkin lymphoma. PLoS One 9(11):e112642.  https://doi.org/10.1371/journal.pone.0112642 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bell AJ, Brownlie CA, Gallacher A, Campbell A, Porteous DJ, Smith BH, Hocking L, Padmanabhan S, Jarrett RF (2015a) Prevalence of inherited chromosomally integrated HHV-6 varies by geographical location/nationality within the UK. In: 9th International conference on HHV-6 and HHV-7, Boston, November 9–11, abstract 8–16Google Scholar
  10. Bell AJ, Johnson PDC, Jarrett RF (2015b) Integration and inheritance of HHV-6 genome concatemers. In: 9th International conference on HHV-6 and HHV-7, Boston, November 9–11Google Scholar
  11. Caserta MT, Hall CB, Schnabel K, Lofthus G, Marino A, Shelley L, Yoo C, Carnahan J, Anderson L, Wang H (2010) Diagnostic assays for active infection with human herpesvirus 6 (HHV-6). J Clin Virol 48(1):55–57.  https://doi.org/10.1016/j.jcv.2010.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chai W, Shay JW, Wright WE (2005) Human telomeres maintain their overhang length at senescence. Mol Cell Biol 25(6):2158–2168.  https://doi.org/10.1128/MCB.25.6.2158-2168.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chatzidimitriou D, Kirmizis D, Gavriilaki E, Chatzidimitriou M, Malisiovas N (2012) Atherosclerosis and infection: is the jury still not in? Future Microbiol 7(10):1217–1230.  https://doi.org/10.2217/fmb.12.87 CrossRefPubMedGoogle Scholar
  14. Clark DA, Nacheva EP, Leong HN, Brazma D, Li YT, Tsao EH, Buyck HC, Atkinson CE, Lawson HM, Potter MN, Griffiths PD (2006) Transmission of integrated human herpesvirus 6 through stem cell transplantation: implications for laboratory diagnosis. J Infect Dis 193(7):912–916CrossRefPubMedGoogle Scholar
  15. Daibata M, Taguchi T, Sawada T, Taguchi H, Miyoshi I (1998a) Chromosomal transmission of human herpesvirus 6 DNA in acute lymphoblastic leukaemia. Lancet 352(9127):543–544. S0140-6736(05)79251-5 [pii]  https://doi.org/10.1016/S0140-6736(05)79251-5 CrossRefGoogle Scholar
  16. Daibata M, Taguchi T, Taguchi H, Miyoshi I (1998b) Integration of human herpesvirus 6 in a Burkitt’s lymphoma cell line. Br J Haematol 102(5):1307–1313CrossRefPubMedGoogle Scholar
  17. Daibata M, Taguchi T, Nemoto Y, Taguchi H, Miyoshi I (1999) Inheritance of chromosomally integrated human herpesvirus 6 DNA. Blood 94(5):1545–1549PubMedGoogle Scholar
  18. Das BB, Munoz FM (2017) Screening for chromosomally integrated human herpesvirus 6 status in solid-organ donors and recipients. J Heart Lung Transplant 36(4):481.  https://doi.org/10.1016/j.healun.2017.01.004 CrossRefPubMedGoogle Scholar
  19. de Lange T (2009) How telomeres solve the end-protection problem. Science 326(5955):948–952.  https://doi.org/10.1126/science.1170633 CrossRefPubMedPubMedCentralGoogle Scholar
  20. de Pagter PJ, Schuurman R, Meijer E, van Baarle D, Sanders EA, Boelens JJ (2008) Human herpesvirus type 6 reactivation after haematopoietic stem cell transplantation. J Clin Virol 43(4):361–366.  https://doi.org/10.1016/j.jcv.2008.08.008 CrossRefPubMedGoogle Scholar
  21. de Pagter PJ, Schuurman R, Keukens L, Schutten M, Cornelissen JJ, van Baarle D, Fries E, Sanders EA, Minnema MC, van der Holt BR, Meijer E, Boelens JJ (2013) Human herpes virus 6 reactivation: important predictor for poor outcome after myeloablative, but not non-myeloablative allo-SCT. Bone Marrow Transplant 48(11):1460–1464.  https://doi.org/10.1038/bmt.2013.78 CrossRefPubMedGoogle Scholar
  22. Deng H, Dewhurst S (1998) Functional identification and analysis of cis-acting sequences which mediate genome cleavage and packaging in human herpesvirus 6. J Virol 72(1):320–329PubMedPubMedCentralGoogle Scholar
  23. Deng Z, Lezina L, Chen CJ, Shtivelband S, So W, Lieberman PM (2002) Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol Cell 9(3):493–503CrossRefPubMedGoogle Scholar
  24. Djikeng A, Halpin R, Kuzmickas R, Depasse J, Feldblyum J, Sengamalay N, Afonso C, Zhang X, Anderson NG, Ghedin E, Spiro DJ (2008) Viral genome sequencing by random priming methods. BMC Genomics 9:5.  https://doi.org/10.1186/1471-2164-9-5 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Doll R (2001) Cohort studies: history of the method. I. Prospective cohort studies. Sozial- und Praventivmedizin 46(2):75–86CrossRefPubMedGoogle Scholar
  26. Dominguez G, Dambaugh TR, Stamey FR, Dewhurst S, Inoue N, Pellett PE (1999) Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J Virol 73(10):8040–8052PubMedPubMedCentralGoogle Scholar
  27. Dulery R, Salleron J, Dewilde A, Rossignol J, Boyle EM, Gay J, de Berranger E, Coiteux V, Jouet JP, Duhamel A, Yakoub-Agha I (2012) Early human herpesvirus type 6 reactivation after allogeneic stem cell transplantation: a large-scale clinical study. Biol Blood Marrow Transplant 18(7):1080–1089.  https://doi.org/10.1016/j.bbmt.2011.12.579 CrossRefPubMedGoogle Scholar
  28. Endo A, Watanabe K, Ohye T, Suzuki K, Matsubara T, Shimizu N, Kurahashi H, Yoshikawa T, Katano H, Inoue N, Imai K, Takagi M, Morio T, Mizutani S (2014) Molecular and Virological evidence of viral activation from chromosomally integrated human herpesvirus 6A in a patient with X-linked severe combined immunodeficiency. Clin Infect Dis 59(4):545–548.  https://doi.org/10.1093/cid/ciu323 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Engdahl E, Dunn N, Niehusmann P, Wideman S, Wipfler P, Becker AJ, Ekstrom TJ, Almgren M, Fogdell-Hahn A (2017) Human herpesvirus 6B induces hypomethylation on chromosome 17p13.3 correlating with increased gene expression and virus integration. J Virol.  https://doi.org/10.1128/JVI.02105-16
  30. Flamand L (2014) Pathogenesis from the reactivation of chromosomally integrated human herpesvirus type 6: facts rather than fiction. Clin Infect Dis 59(4):549–551.  https://doi.org/10.1093/cid/ciu326 CrossRefPubMedGoogle Scholar
  31. Gompels UA, Macaulay HA (1995) Characterization of human telomeric repeat sequences from human herpesvirus 6 and relationship to replication. J Gen Virol 76(Pt 2):451–458CrossRefPubMedGoogle Scholar
  32. Gravel A, Tomoiu A, Cloutier N, Gosselin J, Flamand L (2003) Characterization of the immediate-early 2 protein of human herpesvirus 6, a promiscuous transcriptional activator. Virology 308(2):340–353CrossRefPubMedGoogle Scholar
  33. Gravel A, Hall CB, Flamand L (2013a) Sequence analysis of Transplacentally acquired human herpesvirus 6 DNA is consistent with transmission of a chromosomally integrated reactivated virus. J Infect Dis 207(10):1585–1589.  https://doi.org/10.1093/infdis/jit060 CrossRefPubMedGoogle Scholar
  34. Gravel A, Sinnett D, Flamand L (2013b) Frequency of chromosomally-integrated human herpesvirus 6 in children with acute lymphoblastic leukemia. PLoS One 8(12):e84322.  https://doi.org/10.1371/journal.pone.0084322 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gravel A, Dubuc I, Morissette G, Sedlak RH, Jerome KR, Flamand L (2015) Inherited chromosomally integrated human herpesvirus 6 as a predisposing risk factor for the development of angina pectoris. Proc Natl Acad Sci USA 112(26):8058–8063.  https://doi.org/10.1073/pnas.1502741112 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gravel A, Dubuc I, Brooks-Wilson A, Aronson KJ, Simard J, Velasquez-Garcia HA, Spinelli JJ, Flamand L (2017a) Inherited chromosomally integrated human herpesvirus 6 and breast cancer. Cancer Epidemiol Biomark Prev 26(3):425–427.  https://doi.org/10.1158/1055-9965.EPI-16-0735 CrossRefGoogle Scholar
  37. Gravel A, Dubuc I, Wallaschek N, Gilbert-Girard S, Collin V, Hall-Sedlak R, Jerome KR, Mori Y, Carbonneau J, Boivin G, Kaufer BB, Flamand L (2017b) Cell culture systems to study human Herpesvirus-6 chromosomal integration. J Virol 91:pii: e00437-17Google Scholar
  38. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97(4):503–514CrossRefPubMedGoogle Scholar
  39. Gulve N, Frank C, Klepsch M, Prusty BK (2017) Chromosomal integration of HHV-6A during non-productive viral infection. Sci Rep 7(1):512.  https://doi.org/10.1038/s41598-017-00658-y CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83(22):8604–8610.  https://doi.org/10.1021/ac202028g CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10(10):1003–1005.  https://doi.org/10.1038/nmeth.2633 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Huang Y, Hidalgo-Bravo A, Zhang E, Cotton VE, Mendez-Bermudez A, Wig G, Medina-Calzada Z, Neumann R, Jeffreys AJ, Winney B, Wilson JF, Clark DA, Dyer MJ, Royle NJ (2014) Human telomeres that carry an integrated copy of human herpesvirus 6 are often short and unstable, facilitating release of the viral genome from the chromosome. Nucleic Acids Res 42(1):315–327.  https://doi.org/10.1093/nar/gkt840 CrossRefPubMedGoogle Scholar
  43. Hubacek P, Muzikova K, Hrdlickova A, Cinek O, Hyncicova K, Hrstkova H, Sedlacek P, Stary J (2009) Prevalence of HHV-6 integrated chromosomally among children treated for acute lymphoblastic or myeloid leukemia in the Czech Republic. J Med Virol 81(2):258–263.  https://doi.org/10.1002/jmv.21371 CrossRefPubMedGoogle Scholar
  44. Imbert-Marcille BM, Tang XW, Lepelletier D, Besse B, Moreau P, Billaudel S, Milpied N (2000) Human herpesvirus 6 infection after autologous or allogeneic stem cell transplantation: a single-center prospective longitudinal study of 92 patients. Clin Infect Dis 31(4):881–886.  https://doi.org/10.1086/318142 CrossRefPubMedGoogle Scholar
  45. Isegawa Y, Mukai T, Nakano K, Kagawa M, Chen J, Mori Y, Sunagawa T, Kawanishi K, Sashihara J, Hata A, Zou P, Kosuge H, Yamanishi K (1999) Comparison of the complete DNA sequences of human herpesvirus 6 variants A and B. J Virol 73(10):8053–8063PubMedPubMedCentralGoogle Scholar
  46. Jarrett R (2015) iciHHV-6 prevalence and disease associations in the generation Scotland study. In: 9th International conference on HHV-6 and HHV-7, abstract 8-3, Boston, November 9–11Google Scholar
  47. Jarrett RF, Gledhill S, Qureshi F, Crae SH, Madhok R, Brown I, Evans I, Krajewski A, O’Brien CJ, Cartwright RA et al (1988) Identification of human herpesvirus 6-specific DNA sequences in two patients with non-Hodgkin’s lymphoma. Leukemia 2(8):496–502PubMedGoogle Scholar
  48. Kamble RT, Clark DA, Leong HN, Heslop HE, Brenner MK, Carrum G (2007) Transmission of integrated human herpesvirus-6 in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 40(6):563–566. 1705780 [pii]  https://doi.org/10.1038/sj.bmt.1705780 CrossRefPubMedGoogle Scholar
  49. Kaufer BB, Flamand L (2014) Chromosomally integrated HHV-6: impact on virus, cell and organismal biology. Curr Opin Virol 9C:111–118.  https://doi.org/10.1016/j.coviro.2014.09.010 CrossRefGoogle Scholar
  50. Kishi M, Harada H, Takahashi M, Tanaka A, Hayashi M, Nonoyama M, Josephs SF, Buchbinder A, Schachter F, Ablashi DV et al (1988) A repeat sequence, GGGTTA, is shared by DNA of human herpesvirus 6 and Marek’s disease virus. J Virol 62(12):4824–4827PubMedPubMedCentralGoogle Scholar
  51. Kondo K, Kondo T, Okuno T, Takahashi M, Yamanishi K (1991) Latent human herpesvirus 6 infection of human monocytes/macrophages. J Gen Virol 72(Pt 6):1401–1408CrossRefGoogle Scholar
  52. Kondo K, Shimada K, Sashihara J, Tanaka-Taya K, Yamanishi K (2002) Identification of human herpesvirus 6 latency-associated transcripts. J Virol 76(8):4145–4151CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kuhl U, Lassner D, Wallaschek N, Gross UM, Krueger GR, Seeberg B, Kaufer BB, Escher F, Poller W, Schultheiss HP (2015) Chromosomally integrated human herpesvirus 6 in heart failure: prevalence and treatment. Eur J Heart Fail 17(1):9–19.  https://doi.org/10.1002/ejhf.194 CrossRefPubMedGoogle Scholar
  54. Libby P (2013) Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med 368(21):2004–2013.  https://doi.org/10.1056/NEJMra1216063 CrossRefPubMedGoogle Scholar
  55. Libby P, Lichtman AH, Hansson GK (2013) Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 38(6):1092–1104.  https://doi.org/10.1016/j.immuni.2013.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lipps HJ, Rhodes D (2009) G-quadruplex structures: in vivo evidence and function. Trends Cell Biol 19(8):414–422.  https://doi.org/10.1016/j.tcb.2009.05.002 CrossRefPubMedGoogle Scholar
  57. Ljungman P, de la Camara R, Cordonnier C, Einsele H, Engelhard D, Reusser P, Styczynski J, Ward K (2008) Management of CMV, HHV-6, HHV-7 and Kaposi-sarcoma herpesvirus (HHV-8) infections in patients with hematological malignancies and after SCT. Bone Marrow Transplant 42(4):227–240.  https://doi.org/10.1038/bmt.2008.162 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Luppi M, Marasca R, Barozzi P, Ferrari S, Ceccherini-Nelli L, Batoni G, Merelli E, Torelli G (1993) Three cases of human herpesvirus-6 latent infection: integration of viral genome in peripheral blood mononuclear cell DNA. J Med Virol 40(1):44–52CrossRefPubMedGoogle Scholar
  59. Makarov VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88(5):657–666CrossRefPubMedGoogle Scholar
  60. Malkova A, Ira G (2013) Break-induced replication: functions and molecular mechanism. Curr Opin Genet Dev 23(3):271–279.  https://doi.org/10.1016/j.gde.2013.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Martin ME, Thomson BJ, Honess RW, Craxton MA, Gompels UA, Liu MY, Littler E, Arrand JR, Teo I, Jones MD (1991) The genome of human herpesvirus 6: maps of unit-length and concatemeric genomes for nine restriction endonucleases. J Gen Virol 72(Pt 1):157–168CrossRefPubMedGoogle Scholar
  62. McElligott R, Wellinger RJ (1997) The terminal DNA structure of mammalian chromosomes. EMBO J 16(12):3705–3714.  https://doi.org/10.1093/emboj/16.12.3705 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Mimitou EP, Symington LS (2009) DNA end resection: many nucleases make light work. DNA Repair (Amst) 8(9):983–995.  https://doi.org/10.1016/j.dnarep.2009.04.017 CrossRefGoogle Scholar
  64. Morissette G, Flamand L (2010) Herpesviruses and chromosomal integration. J Virol 84(23):12100–12109.  https://doi.org/10.1128/JVI.01169-10 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Morris C, Luppi M, McDonald M, Barozzi P, Torelli G (1999) Fine mapping of an apparently targeted latent human herpesvirus type 6 integration site in chromosome band 17p13.3. J Med Virol 58(1):69–75. doi:10.1002/(SICI)1096-9071(199905)58:1<69::AID-JMV11>3.0.CO;2-3 [pii]Google Scholar
  66. Nacheva EP, Ward KN, Brazma D, Virgili A, Howard J, Leong HN, Clark DA (2008) Human herpesvirus 6 integrates within telomeric regions as evidenced by five different chromosomal sites. J Med Virol 80(11):1952–1958.  https://doi.org/10.1002/jmv.21299 CrossRefPubMedGoogle Scholar
  67. Nikitina T, Woodcock CL (2004) Closed chromatin loops at the ends of chromosomes. J Cell Biol 166(2):161–165.  https://doi.org/10.1083/jcb.200403118 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ohye T, Inagaki H, Ihira M, Higashimoto Y, Kato K, Oikawa J, Yagasaki H, Niizuma T, Takahashi Y, Kojima S, Yoshikawa T, Kurahashi H (2014) Dual roles for the telomeric repeats in chromosomally integrated human herpesvirus-6. Sci Rep 4:4559.  https://doi.org/10.1038/srep04559 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ (2005) Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat Struct Mol Biol 12(10):847–854.  https://doi.org/10.1038/nsmb982 CrossRefPubMedGoogle Scholar
  70. Pellett PE, Ablashi DV, Ambros PF, Agut H, Caserta MT, Descamps V, Flamand L, Gautheret-Dejean A, Hall CB, Kamble RT, Kuehl U, Lassner D, Lautenschlager I, Loomis KS, Luppi M, Lusso P, Medveczky PG, Montoya JG, Mori Y, Ogata M, Pritchett JC, Rogez S, Seto E, Ward KN, Yoshikawa T, Razonable RR (2012) Chromosomally integrated human herpesvirus 6: questions and answers. Rev Med Virol 22(3):144–155.  https://doi.org/10.1002/rmv.715 CrossRefPubMedGoogle Scholar
  71. Potenza L, Barozzi P, Rossi G, Riva G, Vallerini D, Zanetti E, Quadrelli C, Morselli M, Forghieri F, Maccaferri M, Paolini A, Marasca R, Narni F, Luppi M (2011) May the indirect effects of CIHHV-6 in transplant patients be exerted through the reactivation of the viral replicative machinery? Transplantation 92(9):e49–e51. author reply e51-42.  https://doi.org/10.1097/TP.0b013e3182339d1a CrossRefPubMedGoogle Scholar
  72. Prusty BK, Krohne G, Rudel T (2013) Reactivation of chromosomally integrated human herpesvirus-6 by telomeric circle formation. PLoS Genet 9(12):e1004033.  https://doi.org/10.1371/journal.pgen.1004033 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Quintela A, Escuret V, Roux S, Bonnafous P, Gilis L, Barraco F, Labussiere-Wallet H, Duscastelle-Lepretre S, Nicolini FE, Thomas X, Chidiac C, Ferry T, Frobert E, Morisset S, Poitevin-Later F, Monneret G, Michallet M, Ader F, Lyon HSG (2016) HHV-6 infection after allogeneic hematopoietic stem cell transplantation: from chromosomal integration to viral co-infections and T-cell reconstitution patterns. J Infect 72:214–222.  https://doi.org/10.1016/j.jinf.2015.09.039 CrossRefPubMedGoogle Scholar
  74. Raices M, Verdun RE, Compton SA, Haggblom CI, Griffith JD, Dillin A, Karlseder J (2008) C. Elegans telomeres contain G-strand and C-strand overhangs that are bound by distinct proteins. Cell 132(5):745–757.  https://doi.org/10.1016/j.cell.2007.12.039 CrossRefPubMedGoogle Scholar
  75. Salahuddin SZ, Ablashi DV, Markham PD, Josephs SF, Sturzenegger S, Kaplan M, Halligan G, Biberfeld P, Wong-Staal F, Kramarsky B et al (1986) Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 234(4776):596–601CrossRefPubMedGoogle Scholar
  76. Schmidt-Lucke C, Spillmann F, Bock T, Kuhl U, Van Linthout S, Schultheiss HP, Tschope C (2010) Interferon beta modulates endothelial damage in patients with cardiac persistence of human parvovirus b19 infection. J Infect Dis 201(6):936–945.  https://doi.org/10.1086/650700 CrossRefPubMedGoogle Scholar
  77. Sedlak RH, Cook L, Huang ML, Magaret A, Zerr DM, Boeckh M, Jerome KR (2014) Identification of chromosomally integrated human herpesvirus 6 by droplet digital PCR. Clin Chem 60(5):765–772.  https://doi.org/10.1373/clinchem.2013.217240 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Sedlak RH, Hill JA, Nguyen T, Cho M, Levin G, Cook L, Huang ML, Flamand L, Zerr DM, Boeckh M, Jerome KR (2016) Detection of Human Herpesvirus 6B (HHV-6B) reactivation in hematopoietic cell transplant recipients with inherited chromosomally integrated HHV-6A by droplet digital PCR. J Clin Microbiol 54(5):1223–1227.  https://doi.org/10.1128/JCM.03275-15 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Smith BH, Campbell A, Linksted P, Fitzpatrick B, Jackson C, Kerr SM, Deary IJ, Macintyre DJ, Campbell H, McGilchrist M, Hocking LJ, Wisely L, Ford I, Lindsay RS, Morton R, Palmer CN, Dominiczak AF, Porteous DJ, Morris AD (2013) Cohort profile: generation Scotland: Scottish Family Health Study (GS:SFHS). The study, its participants and their potential for genetic research on health and illness. Int J Epidemiol 42(3):689–700.  https://doi.org/10.1093/ije/dys084 CrossRefPubMedGoogle Scholar
  80. Strenger V, Caselli E, Lautenschlager I, Schwinger W, Aberle SW, Loginov R, Gentili V, Nacheva E, DiLuca D, Urban C (2014) Detection of HHV-6-specific mRNA and antigens in PBMCs of individuals with chromosomally integrated HHV-6 (ciHHV-6). Clin Microbiol Infect 20(10):1027–1032.  https://doi.org/10.1111/1469-0691.12639 CrossRefPubMedGoogle Scholar
  81. Thomson BJ, Dewhurst S, Gray D (1994) Structure and heterogeneity of the a sequences of human herpesvirus 6 strain variants U1102 and Z29 and identification of human telomeric repeat sequences at the genomic termini. J Virol 68(5):3007–3014PubMedPubMedCentralGoogle Scholar
  82. Torelli G, Marasca R, Luppi M, Selleri L, Ferrari S, Narni F, Mariano MT, Federico M, Ceccherini-Nelli L, Bendinelli M et al (1991) Human herpesvirus-6 in human lymphomas: identification of specific sequences in Hodgkin's lymphomas by polymerase chain reaction. Blood 77(10):2251–2258PubMedGoogle Scholar
  83. Torelli G, Barozzi P, Marasca R, Cocconcelli P, Merelli E, Ceccherini-Nelli L, Ferrari S, Luppi M (1995) Targeted integration of human herpesvirus 6 in the p arm of chromosome 17 of human peripheral blood mononuclear cells in vivo. J Med Virol 46(3):178–188CrossRefPubMedGoogle Scholar
  84. Trempe F, Gravel A, Dubuc I, Wallaschek N, Collin V, Gilbert-Girard S, Morissette G, Kaufer BB, Flamand L (2015) Characterization of human herpesvirus 6A/B U94 as ATPase, helicase, exonuclease and DNA-binding proteins. Nucleic Acids Res 43(12):6084–6098.  https://doi.org/10.1093/nar/gkv503 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tweedy J, Spyrou MA, Pearson M, Lassner D, Kuhl U, Gompels UA (2016) Complete genome sequence of germline chromosomally integrated human herpesvirus 6A and analyses integration sites define a new human endogenous virus with potential to reactivate as an emerging infection. Viruses 8(1):19. https://doi.org/10.3390/v8010019 CrossRefPubMedCentralGoogle Scholar
  86. Verdun RE, Karlseder J (2006) The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127(4):709–720.  https://doi.org/10.1016/j.cell.2006.09.034 CrossRefPubMedGoogle Scholar
  87. Wallaschek N, Gravel A, Flamand L, Kaufer BB (2016a) The putative U94 integrase is dispensable for human herpesvirus 6 (HHV-6) chromosomal integration. J Gen Virol.  https://doi.org/10.1099/jgv.0.000502
  88. Wallaschek N, Sanyal A, Pirzer F, Gravel A, Mori Y, Flamand L, Kaufer BB (2016b) The Telomeric repeats of Human Herpesvirus 6A (HHV-6A) are required for efficient virus integration. PLoS Pathog 12(5):e1005666.  https://doi.org/10.1371/journal.ppat.1005666 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Ward KN, Leong HN, Nacheva EP, Howard J, Atkinson CE, Davies NW, Griffiths PD, Clark DA (2006) Human herpesvirus 6 chromosomal integration in immunocompetent patients results in high levels of viral DNA in blood, sera, and hair follicles. J Clin Microbiol 44(4):1571–1574. 44/4/1571 [pii]  https://doi.org/10.1128/JCM.44.4.1571-1574.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Willett WC, Colditz GA (1998) Approaches for conducting large cohort studies. Epidemiol Rev 20(1):91–99CrossRefPubMedGoogle Scholar
  91. Yamada Y, Osumi T, Imadome KI, Takahashi E, Ohye T, Yoshikawa T, Tomizawa D, Kato M, Matsumoto K (2017) Transmission of chromosomally integrated human herpesvirus 6 via cord blood transplantation. Transpl Infect Dis 19(1).  https://doi.org/10.1111/tid.12636 CrossRefGoogle Scholar
  92. Zerr DM (2006) Human herpesvirus 6 and central nervous system disease in hematopoietic cell transplantation. J Clin Virol 37(Suppl 1):S52–S56CrossRefPubMedGoogle Scholar
  93. Zerr DM, Fann JR, Breiger D, Boeckh M, Adler AL, Xie H, Delaney C, Huang ML, Corey L, Leisenring WM (2011) HHV-6 reactivation and its effect on delirium and cognitive functioning in hematopoietic cell transplantation recipients. Blood 117(19):5243–5249.  https://doi.org/10.1182/blood-2010-10-316083 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zerr DM, Boeckh M, Delaney C, Martin PJ, Xie H, Adler AL, Huang ML, Corey L, Leisenring WM (2012) HHV-6 reactivation and associated sequelae after hematopoietic cell transplantation. Biol Blood Marrow Transplant 18(11):1700–1708.  https://doi.org/10.1016/j.bbmt.2012.05.012 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Division of Infectious and Immune DiseasesCHU de Québec Research CenterQuebecCanada
  2. 2.Department of Microbiology, Infectious Disease and Immunology, Faculty of MedicineUniversité LavalQuebecCanada

Personalised recommendations