Providing Confidentiality for Medical Image—An Enhanced Chaotic Encryption Approach

  • M. Y. Mohamed Parvees
  • J. Abdul Samath
  • B. Parameswaran Bose
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 645)

Abstract

This study presents an encryption algorithm to secure the medical images using enhanced chaotic economic map. The different enhanced chaotic economic maps are derived and studied with respect to their bifurcate nature and Lyapunov exponents. The enhanced maps are utilized for chaotic sequence generations. These sequences are employed for confusing, diffusing, and swapping the 16-bit DICOM image’s pixels, thereby assure confidentiality. After scrambling, the different security analyses such as statistical, entropy, differential, key space analysis are performed to prove the effectiveness of the proposed algorithm.

Keywords

Patient confidentiality Chaotic map DICOM encryption 

References

  1. 1.
    Kobayashi, L.O.M., Fururie, S.S.: Proposal for DICOM multiframe medical image integrity and authenticity. J. Digit. Imag. 22(1), 71–83 (2009).  https://doi.org/10.1007/s10278-008-9103-6CrossRefGoogle Scholar
  2. 2.
    Ravichandran, D., Praveenkumar, P., Rayappan, J.B.B., Amirtharajan, R.: Chaos based crossover and mutation for securing DICOM image. Comput. Biol. Med. 72, 170–184 (2016).  https://doi.org/10.1016/j.compbiomed.2016.03.020CrossRefGoogle Scholar
  3. 3.
    Praveenkumar, P., Amirtharajan, R., Thenmozhi, K., Rayappan, J.B.B.: Triple chaotic image scrambling on RGB—a random image encryption approach. Secur. Commun. Netw. 8(18), 3335–3345 (2015).  https://doi.org/10.1002/sec.1257CrossRefGoogle Scholar
  4. 4.
    Fu, C., Meng, W., Zhan, Y., Zhu, Z., Lau, F.C.M., Tse, C.K., Ma, H.: An efficient and secure medical image protection scheme based on chaotic maps. Comput. Biol. Med. 43, 1000–1010 (2013).  https://doi.org/10.1016/j.compbiomed.2013.05.005CrossRefGoogle Scholar
  5. 5.
    Kanso, A., Ghebleh, M.: An efficient and robust image encryption scheme for medical applications. Commun. Nonlinear Sci. Numer. Simul. 24(1–3), 98–116 (2015).  https://doi.org/10.1016/j.cnsns.2014.12.005MathSciNetCrossRefGoogle Scholar
  6. 6.
    Yavuz, E., Yazici, R., Kasapbas, M.C., Yamac, E.: A chaos-based image encryption algorithm with simple logical functions. Comput. Electr. Eng. 54, 471–483 (2016).  https://doi.org/10.1016/j.compeleceng.2015.11.008CrossRefGoogle Scholar
  7. 7.
    Parvees, M.Y.M., Samath, J.A., Bose, B.P.: Secured medical images—a chaotic pixel scrambling approach. J. Med. Syst. 40, 232 (2016).  https://doi.org/10.1007/s10916-016-0611-5CrossRefGoogle Scholar
  8. 8.
    Praveenkumar, P., Amirtharajan, R., Thenmozhi, K.: Medical data sheet in safe havens—a tri-layer cryptic solution. Comput. Biol. Med. 62, 264–276 (2015).  https://doi.org/10.1016/j.compbiomed.2015.04.031CrossRefGoogle Scholar
  9. 9.
    Dzwonkowski, M., Papaj, M., Rykaczewski, R.: A new quaternion-based encryption method for DICOM images. IEEE T. Image Process. (2015).  https://doi.org/10.1109/TIP.2015.2467317Google Scholar
  10. 10.
    Zhang, S., Gao, T., Gao, L.: A novel encryption frame for medical image with watermark based on hyperchaotic system. Math. Probl. Eng. (2014).  https://doi.org/10.1155/2014/240749Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • M. Y. Mohamed Parvees
    • 1
  • J. Abdul Samath
    • 2
  • B. Parameswaran Bose
    • 3
  1. 1.Research and Development Centre, Bharathiar UniversityCoimbatoreIndia
  2. 2.Department of Computer ScienceGovernment Arts CollegeUdumalpetIndia
  3. 3.Fat Pipe Network Pvt. Ltd.Mettukuppam, ChennaiIndia

Personalised recommendations