Microgrids

  • N. K. Kishore
  • Saroja Kanti Sahoo
  • A. K. Sinha
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

A microgrid is an aggregation of distributed generating units, distributed energy storage, sensitive and non-sensitive loads, smart switches, communication facility, automation capability, and centralized/decentralized control system. It is capable of operating in grid-connected as well as islanded mode. The remotely located load centers are highly benefitted with the development of microgrid at these locations. Solar and wind energy can be harnessed using the power electronics-based converters with an associated control system. Additionally, energy storage devices in the microgrids improve the power supply reliability during generation deficit conditions in the islanded mode of operation. This chapter addresses the attributes of such systems, its architecture, control issues, and developments around the world.

Keywords

Distributed generation Energy storage units Voltage source converters Microgrid controllers 

Notes

Acknowledgements

The authors are thankful to Indian Institute of Technology Kharagpur for its support and permission to submit this chapter.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Sahoo SK, Sinha AK, Kishore NK (2015, December) Modeling and real-time simulation of an AC microgrid with solar photovoltaic system. In India conference (INDICON), 2015 Annual IEEE, pp 1–6Google Scholar
  5. 5.
    Sahoo SK, Sinha AK, Kishore NK (2016, December) Low voltage ride-through of a grid-connected doubly-fed induction generator with speed sensorless vector control. In power systems conference (NPSC), 2016 National, pp 1–6Google Scholar
  6. 6.
    Lasseter RH (2007) Microgrids and distributed generation. J Energy Eng 133:144–149CrossRefGoogle Scholar
  7. 7.
    Ackermann T, Andersson G, Söder L (2001) Distributed generation: a definition. Electr Power Syst Res 57:195–204CrossRefGoogle Scholar
  8. 8.
    Katiraei F, Iravani R, Hatziargyriou N, Dimeas A (2008) Microgrids management. IEEE Power Energy Mag 6Google Scholar
  9. 9.
    Gu Z, Rizy DT (1996) Neural networks for combined control of capacitor banks and voltage regulators in distribution systems. IEEE Trans Power Deliv 11:1921–1928CrossRefGoogle Scholar
  10. 10.
    Kim GW, Lee KY (2005) Coordination control of ULTC transformer and STATCOM based on an artificial neural network. IEEE Trans Power Syst 20:580–586CrossRefGoogle Scholar
  11. 11.
    Tanaka K, Oshiro M, Toma S, Yona A, Senjyu T, Funabashi T, Kim CH (2010) Decentralised control of voltage in distribution systems by distributed generators. IET Gener Transm Distrib 4:1251–1260CrossRefGoogle Scholar
  12. 12.
    Vovos PN, Kiprakis AE, Wallace AR, Harrison GP (2007) Centralized and distributed voltage control: impact on distributed generation penetration. IEEE Trans Power Syst 22:476–483CrossRefGoogle Scholar
  13. 13.
    Logeshwari V, Chitra N, Kumar AS, Munda J (2013) Optimal power sharing for microgrid with multiple distributed generators. Procedia Eng 64:546–551CrossRefGoogle Scholar
  14. 14.
    Lopes JP, Hatziargyriou N, Mutale J, Djapic P, Jenkin N (2007) Integrating distributed generation into electric power systems: a review of drivers, challenges and opportunities. Electric Power Syst Res 77:1189–1203CrossRefGoogle Scholar
  15. 15.
    Coster EJ, Myrzik J, Kruimer B, Kling WL (2011) Integration issues of distributed generation in distribution grids. Proc IEEE 99:28–39CrossRefGoogle Scholar
  16. 16.
    Hatziargyriou N, Asano H, Iravani R, Marnay C (2007) Microgrids. IEEE power and energy mag 5:78–94CrossRefGoogle Scholar
  17. 17.
    Burke AF (2007) Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proc IEEE 95:806–820CrossRefGoogle Scholar
  18. 18.
    Roberts B (2009) Capturing grid power. IEEE Power and Energy Mag, 7Google Scholar
  19. 19.
    Nejabatkhah F, Li YW (2015) Overview of power management strategies of hybrid AC/DC microgrid. IEEE Trans Power Electron 30:7072–7089CrossRefGoogle Scholar
  20. 20.
    Tan X, Li Q, Wang H (2013) Advances and trends of energy storage technology in Microgrid. Int J Electr Power Energy Syst 44:179–191CrossRefGoogle Scholar
  21. 21.
    Bernhoff H (2011) Magnetic bearings in kinetic energy storage systems for vehicular applications. J Electrical Syst 7:225–236Google Scholar
  22. 22.
    Shen J, Jiang C, Li B (2015) Controllable load management approaches in smart grids. Energies 8(10):11187–11202CrossRefGoogle Scholar
  23. 23.
    Lee BK, Ehsami M (2001) A simplified functional simulation model for three-phase voltage-source inverter using switching function concept. IEEE Trans Industr Electron 48:309–321CrossRefGoogle Scholar
  24. 24.
    Itkonen T, Luukko J (2008, November) Switching-function-based simulation model for three-phase voltage source inverter taking dead-time effects into account. In Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE, pp 992–997Google Scholar
  25. 25.
    Blasko V, Kaura V (1997) A new mathematical model and control of a three-phase AC–DC voltage source converter. IEEE Trans Power Electron 12:116–123CrossRefGoogle Scholar
  26. 26.
    Han H, Hou X, Yang J, Wu J, Su M, Guerrero JM (2016) Review of power sharing control strategies for islanding operation of AC microgrids. IEEE Trans Smart Grid 7:200–215CrossRefGoogle Scholar
  27. 27.
    Guerrero JM, Vasquez JC, Matas J, De Vicuña LG, Castilla M (2011) Hierarchical control of droop-controlled AC and DC microgrids?A general approach toward standardization. IEEE Trans Ind Electron 58:158–172CrossRefGoogle Scholar
  28. 28.
    Ang KH, Chong G, Li Y (2005) PID control system analysis, design, and technology. IEEE Trans Control Syst Technol 13:559–576CrossRefGoogle Scholar
  29. 29.
    Podlubny I (1994) Fractional-order systems and fractional-order controllers. Inst Exp Phy Slovak Acad Sci Kosice 12(3):1–18Google Scholar
  30. 30.
    Teodorescu R, Blaabjerg F, Liserre M, Loh PC (2006) Proportional-resonant controllers and filters for grid-connected voltage-source converters. IEE Proc-Electric Power Appl 153:750–762CrossRefGoogle Scholar
  31. 31.
    Tan SC, Lai YM, Tse CK (2011) Sliding mode control of switching power converters: techniques and implementation. CRC PressGoogle Scholar
  32. 32.
    Cortés P, Kazmierkowski MP, Kennel RM, Quevedo DE, Rodríguez J (2008) Predictive control in power electronics and drives. IEEE Trans Industr Electron 55:4312–4324CrossRefGoogle Scholar
  33. 33.
    Rodriguez J, Pontt J, Silva CA, Correa P, Lezana P, Cortés P, Ammann U (2007) Predictive current control of a voltage source inverter. IEEE Trans Ind Electron 54:495–503CrossRefGoogle Scholar
  34. 34.
    Chandorkar MC, Divan DM, Adapa R (1993) Control of parallel connected inverters in standalone ac supply systems. IEEE Trans Industry Appl 29:136–143CrossRefGoogle Scholar
  35. 35.
    Katiraei F, Iravani MR (2006) Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans Power Syst 21:1821–1831CrossRefGoogle Scholar
  36. 36.
    Lopes JP, Moreira CL, Madureira AG (2006) Defining control strategies for microgrids islanded operation. IEEE Trans Power Syst 21:916–924CrossRefGoogle Scholar
  37. 37.
    Guerrero JM, De Vicuna LG, Matas J, Castilla M, Miret J (2004) A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems. IEEE Trans Power Electron 19:1205–1213CrossRefGoogle Scholar
  38. 38.
    Guerrero JM, De Vicuna LG, Matas J, Castilla M, Miret J (2005) Output impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Trans Ind Electron 52:1126–1135CrossRefGoogle Scholar
  39. 39.
    Bidram A, Davoudi A (2012) Hierarchical structure of microgrids control system. IEEE Trans Smart Grid 3:1963–1976CrossRefGoogle Scholar
  40. 40.
    Sao CK, Lehn PW (2008) Control and power management of converter fed microgrids. IEEE Trans Power Syst 23:1088–1098CrossRefGoogle Scholar
  41. 41.
    Lee CT, Chu CC, Cheng PT (2013) A new droop control method for the autonomous operation of distributed energy resource interface converters. IEEE Trans Power Electron 28:1980–1993CrossRefGoogle Scholar
  42. 42.
    Majumder R, Ghosh A, Ledwich G, Zare F (2009, July) Angle droop versus frequency droop in a voltage source converter based autonomous microgrid. In: Power and Energy Society General Meeting, 2009. (PES’09). IEEE. pp 1–8Google Scholar
  43. 43.
    Majumder R, Chaudhuri B, Ghosh A, Majumder R, Ledwich G, Zare F (2010) Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop. IEEE Trans Power Syst 25:796–808CrossRefGoogle Scholar
  44. 44.
    Vasquez JC, Guerrero JM, Luna A, Rodríguez P, Teodorescu R (2009) Adaptive droop control applied to voltage-source inverters operating in grid-connected and islanded modes. IEEE Trans Ind Electron 56:4088–4096CrossRefGoogle Scholar
  45. 45.
    De Brabandere K, Bolsens B, Van den Keybus J, Woyte A, Driesen J, Belmans R (2007) A voltage and frequency droop control method for parallel inverters. IEEE Trans Power Electron 22:1107–1115CrossRefGoogle Scholar
  46. 46.
    Li N, Chen L, Low SH (2011, July) Optimal demand response based on utility maximization in power networks. In Power and Energy Society General Meeting, 2011 IEEE pp 1–8Google Scholar
  47. 47.
    Guerrero JM, Hang L, Uceda J (2008) Control of distributed uninterruptible power supply systems. IEEE Trans Ind Electron 55:2845–2859CrossRefGoogle Scholar
  48. 48.
    Rokrok E, Golshan MEH (2010) Adaptive voltage droop scheme for voltage source converters in an islanded multibus microgrid. IET Gener Transm Distrib 4:562–578CrossRefGoogle Scholar
  49. 49.
    Tuladhar A, Jin H, Unger T, Mauch K (2000) Control of parallel inverters in distributed AC power systems with consideration of line impedance effect. IEEE Trans Ind Appl 36:131–138CrossRefGoogle Scholar
  50. 50.
    Borup U, Blaabjerg F, Enjeti PN (2001) Sharing of nonlinear load in parallel-connected three-phase converters. IEEE Trans Ind Appl 37:1817–1823CrossRefGoogle Scholar
  51. 51.
    Zhong QC (2013) Harmonic droop controller to reduce the voltage harmonics of inverters. IEEE Trans Industr Electron 60:936–945CrossRefGoogle Scholar
  52. 52.
    CERTS Microgrid Test Bed Dolan Technology Center. http://certs.aeptechlab.com/CERTS Microgrid Test Bed
  53. 53.
    Lasseter RH, Eto JH, Schenkman B, Stevens J, Vollkommer H, Klapp D, Linton E, Hurtado H, Roy J (2011) CERTS microgrid laboratory test bed. IEEE Trans Power Deliv 26:325–332CrossRefGoogle Scholar
  54. 54.
    Turner G, Kelley JP, Storm CL, Wetz DA, Lee WJ (2015) Design and active control of a microgrid testbed. IEEE Trans Smart Grid 6:73–81CrossRefGoogle Scholar
  55. 55.
    Flueck AJ, Nguyen CP (2010) Integrating renewable and distributed resources-IIT perfect power smart grid prototype. In Power and Energy Society General Meeting, 2010 IEEE pp 1–4Google Scholar
  56. 56.
  57. 57.
  58. 58.
    Balijepalli VM, Khaparde SA, Dobariya CV (2010, July) Deployment of microgrids in India. In 2010 IEEE Power and Energy Society General Meeting, pp 1–7Google Scholar
  59. 59.
    VIDEO: Get a closeup view of the solar microgrid village in India. http://www.greenpeace.org/usa/video-get-closeup-view-solar -micro-grid-village-india/

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • N. K. Kishore
    • 1
  • Saroja Kanti Sahoo
    • 1
  • A. K. Sinha
    • 1
  1. 1.Department of Electrical EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations