Advertisement

Microbial Valorization of Chitinous Bioresources for Chitin Extraction and Production of Chito-Oligomers and N-Acetylglucosamine: Trends, Perspectives and Prospects

  • Suman Kumar Halder
  • Keshab Chandra Mondal
Chapter

Abstract

Chitin, the crystalline polymer of N-acetylglucosamine (GlcNAc) is the world’s second most abundant carbohydrate and principal structural component of cell wall of fungi, yeasts and algae, insect exoskeletons, shells of crustaceans and the microfilarial sheath of nematodes. GlcNAc is present in peptidoglycan, hyaluronic acid and keratin sulfate. In nature, chitin rich waste biomass get re-utilized by an array of microbes producing chitinases and proteases, but the presence of the microbes as well as activity of the enzymes depend on the abundance of the bioresource. Chitin polymer, chito-oligomers and GlcNAc have engrossed colossal attention due to their innumerable potential applications in food, biomedicine, pharmaceuticals, agriculture, cosmetics and environmental cleanup. Owing their immense and versatile appliances, extraction of chitin and production of chito-oligomers and GlcNAc in large scale is necessary to meet the market demand. In this context, chemical extraction/degradation of crustacean shell at elevated temperature is the traditional practice results in the formation of undesired byproducts, creates large quantities of toxic waste as well as associated with high cost, low yield and also deteriorates environmental health. In this perspective, microbial biotransformation and enzymatic treatment are alternative environment friendly ‘green technology’ for generation of chitin, chito-oligomers and GlcNAc in large scale in economical way by valorizing natural chitinous bioresources using potential organic acid, chitinase and protease producing microbes. Moreover, genetic manipulation and metabolic engineering was implemented in recent ages. Altogether, in the present assignment, cutting edge strategies of bioextraction of chitin and production of chito-oligomers and GlcNAc by microbial means as well as their multifaceted appliances in biological and biomedical sector are thoroughly discussed.

Keywords

Crustacean shell Chitin Chitosan Chitooligosaccharides N-acetylglucosamine Microbial valorization Application 

References

  1. Aam BB, Heggset EB, Norberg AL, Sørlie M, Vårum KM, Eijsink VG (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517PubMedPubMedCentralCrossRefGoogle Scholar
  2. Araki Y, Ito E (1974) A pathway of chitosan formation in Mucor rouxii: enzymatic deacetylation of chitin. Biochem Biophys Res Commun 56:669–675PubMedCrossRefGoogle Scholar
  3. Arbia W, Arbia A, Adour L, Amrane A (2013) Chitin extraction from crustacean shells using biological methods – a review. Food Technol Biotechnol 51(1):12–25Google Scholar
  4. Azam MS, Kim EJ, Yang H, Kim JK (2014) High antioxidant and DNA protection activities of N-acetylglucosamine (GlcNAc) and chitobiose produced by exolytic chitinase from Bacillus cereus EW5. Springerplus 3:354. https://doi.org/10.1186/2193-1801-3-354 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Azuma K, Osaki T, Minami S, Okamoto Y (2015) Anticancer and anti-inflammatory properties of chitin and chitosan pligosaccharides. J Funct Biomater 6:33–49. https://doi.org/10.3390/jfb6010033 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81(3):463–469PubMedCrossRefGoogle Scholar
  7. Berrada M, Serreqi A, Dabbarh F, Owusu A, Gupta A, Lehnert S (2005) A novel non-toxic camptothecin formulation for cancer chemotherapy. Biomaterials 26:2115–2120PubMedCrossRefGoogle Scholar
  8. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan based nanofibers and their cellular compatibility. Biomaterials 26(31):6176–6184PubMedCrossRefGoogle Scholar
  9. Bivas-Benita M, van Meijgaarden KE, Franken KLMC, Junginger HE, Borchard G, Ottenhoff THM, Geluk A (2004) Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine 22(13–14):1609–1615PubMedCrossRefGoogle Scholar
  10. Bouhenna M, Salah R, Bakour R, Drouiche N, Abdi N, Grib H, Lounici H, Mameri N (2015) Effects of chitin and its derivatives on human cancer cells lines. Environ Sci Pollut Res Int 22(20):15579–15586PubMedCrossRefGoogle Scholar
  11. Boon NA, Aronson JK (1985) Dietary salt and hypertension: treatment and prevention. Br Med J 290:949–950CrossRefGoogle Scholar
  12. Burtan AF (1998) N-acetyl glucosamine as a cytoprotective agent. 0145715 B. KR PatentGoogle Scholar
  13. Burtan AF, Freeman HJ (1993) N-acetyl glucosamine as a gastroprotective agent. 9323055. WO PatentGoogle Scholar
  14. Chandrasekaran M (2013) Valorization of food processing by-products. CRC Press, Boca RatonGoogle Scholar
  15. Chang HY, Chen JJ, Fang F, Chen Z (2004) Enhancement of antibody response by chitosan, a novel adjuvant of inactivated influenza vaccine. Chin J Biol 17(6):21–24Google Scholar
  16. Chen L, Tian Z, Du Y (2004) Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25:3725–3732PubMedCrossRefGoogle Scholar
  17. Chen JK, Shen CR, Liu CL (2010) N-Acetylglucosamine: production and applications. Mar Drugs 8(9):2493–2516. https://doi.org/10.3390/md8092493 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chitin, Chitosan, Oligosaccharides and Their Derivatives Biological Activities and Applications (2010) Edited by Se-Kwon Kim. CRC PressGoogle Scholar
  19. Cho YI, No HK, Meyers SP (1998) Physicochemical characteristics and functional properties of various commercial chitin and chitosan products. J Agric Food Chem 46:3839–3843CrossRefGoogle Scholar
  20. Cho EJ, Rahman MA, Kim SW, Baek YM, Hwang HJ, Oh JY, Hwang HS, Lee SH, Yun JW (2008) Chitosan oligosaccharides inhibit adipogenesis in 3T3-L1 adipocytes. J Microbiol Biotechnol 18(1):80–87PubMedGoogle Scholar
  21. Cira LA, Huerta S, Hall GM, Shirai K (2002) Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem 37:1359–1366CrossRefGoogle Scholar
  22. Chou TC, Earl FU, Chang-Jer WU, Jeng-Hsien YEH (2003) Chitosan enhances platelet adhesion and aggregation. Biophys Res Commun 302:480–483CrossRefGoogle Scholar
  23. Cohen-Kupiec R, Chet I (1998) The molecular biology of chitin digestion. Curr Opin Biotechnol 9:270–277PubMedCrossRefGoogle Scholar
  24. Da Silva CA, Chalouni C, Williams A, Hartl D, Lee CG, Elias JAA (2009) Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. J Immunol 182:3573–3582PubMedCrossRefGoogle Scholar
  25. Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782PubMedCrossRefGoogle Scholar
  26. Dass CR, Choong PF (2008) The use of chitosan formulations in cancer therapy. J Microencapsul 25:275–279PubMedCrossRefGoogle Scholar
  27. Deng MD, Severson DK, Grund AD, Wassink SL, Burlingame RP, Berry A, Running JA, Kunesh CA, Song L, Jerrell TA, Rosson RA (2005) Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metab Eng 7(3):201–214PubMedCrossRefGoogle Scholar
  28. Dieterle C, Brendel MD, Seissler J, Eckhard M, Bretzel RG, Landgraf R (2006) Therapy of diabetes mellitus. Pancreas transplantation, islet transplantation, stem cell and gene therapy. Internist (Berlin) 47:489–496CrossRefGoogle Scholar
  29. Do JY, Kwak DM, Kwon OD (2008) Antidiabetic effects of high molecular weight chitosan in streptozotocin-induced type 1 diabetic ICR mice. Lab Anim Res 24:311–317Google Scholar
  30. Esmaeili F, Heuking S, Junginger HE, Borchard G (2010) Progress in chitosan-based vaccine delivery systems. J Drug Del Sci Tech 20(1):53–61CrossRefGoogle Scholar
  31. Felse PA, Panda T (1999) Studies on applications of chitin and its derivatives. Bioprocess Eng 20:505–512CrossRefGoogle Scholar
  32. Fernández-Saiz P, Lagaron JM (2011) Chitosan for film and coating applications. In: Plackett D (ed) Biopolymers – new materials for sustainable films and coatings. John Wiley & Sons, Ltd, Chichester, pp 87–105CrossRefGoogle Scholar
  33. Frederiksen RF, Paspaliari DK, Larsen T, Storgaard BG, Larsen MH, Ingmer H, Palcic MM, Leisner JJ (2013) Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology 159:833–847PubMedCrossRefGoogle Scholar
  34. Fukada Y, Kimura K, Ayaki Y (1991) Effect of chitosan feeding on intestinal bile acid metabolism in rats. Lipids 26:395–939PubMedCrossRefGoogle Scholar
  35. Gagne N, Simpson BK (1993) Use of proteolytic enzymes to facilitate recovery of chitin from shrimp wastes. Food Biotechnol 7:253–263CrossRefGoogle Scholar
  36. Ge Z, Baguenard S, Lim LY, Wee A, Khor E (2004) Hydroxyapatite–chitin materials as potential tissue engineered bone substitutes. Biomaterials 25:1049–1058PubMedCrossRefGoogle Scholar
  37. Ghorbel-Bellaaj O, Jellouli K, Younes I, Manni L, Oule Salem M, Nasri MA (2011) Solvent-stable metalloprotease produced by Pseudomonas aeruginosa A2 grown on shrimp shell waste and its application in chitin extraction. Appl Biochem Biotechnol 164:410–425PubMedCrossRefGoogle Scholar
  38. Ghorbel-Bellaaj O, Younes I, Maalej H, Hajji S, Nasri M (2012) Chitin extraction from shrimp shell waste using Bacillus bacteria. Int J Biol Macromol 51:1196–1201PubMedCrossRefGoogle Scholar
  39. Gohel V, Singh A, Vimal M, Ashwini P, Chhatpar HS (2006) Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr J Biotechnol 5:54–72Google Scholar
  40. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74CrossRefGoogle Scholar
  41. Guminska M, Ignacak J, Wojcik E (1996) In vitro inhibitory effect of chitosan and its degradation products on energy metabolism in Ehrlich ascites tumour cells (EAT). Pol J Pharmacol 48:495–501PubMedGoogle Scholar
  42. Halder SK, Adak A, Maity C, Jana A, Das A, Paul T, Ghosh K, Das Mohapatra PK, Pati BR, Mondal KC (2013a) Exploitation of fermented shrimp-shell hydrolysate as functional food: assessment of antioxidant, hypocholesterolemic and prebiotic activities. Indian J Exp Biol 51:924–934PubMedGoogle Scholar
  43. Halder SK, Maity C, Jana A, Das A, Paul T, Das Mohapatra PK, Pati BR, Mondal KC (2013b) Proficient biodegradation of shrimp shell waste by Aeromonas hydrophila SBK1 for the concomitant production of antifungal chitinase and antioxidant chitosaccharides. Int Biodeterior Biodegradation 79:88–97CrossRefGoogle Scholar
  44. Halder SK, Jana A, Das A, Paul T, Das Mohapatra PK, Pati BR, Mondal KC (2014) Appraisal of antioxidant, anti-hemolytic and DNA shielding potentialities of chitosaccharides produced innovatively from shrimp shell by sequential treatment with immobilized enzymes. Food Chem 158:325–334PubMedCrossRefGoogle Scholar
  45. Han HD, Song CK, Park YS, Noh KH, Kim JH, Hwang T, Kim TW, Shin BC (2007) A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. Int J Pharm 350:27–34PubMedCrossRefGoogle Scholar
  46. Hasegawa M, Yagi K, Iwakawa S, Hirai M (2001) Chitosan induces apoptosis via caspase-3 activation in bladder tumor cells. Jpn J Cancer Res 92:459–466PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hayashi K, Ito M (2002) Antidiabetic action of low molecular weight chitosan in genetically obese diabetic KK-Ay mice. Biol Pharma Bull 25:188–192CrossRefGoogle Scholar
  48. Hayashi Y, Ohara N, Ganno T, Yamaguchi K, Ishizaki T, Nakamura T, Sato M (2007) Chewing chitosan-containing gum effectively inhibits the growth of cariogenic bacteria. Arch Oral Biol 52:290–294PubMedCrossRefGoogle Scholar
  49. Hernandez-Gonzalez SO, Gonzalez-Ortiz M, Martinez-Abundis E, RoblesCervantes JA (2010) Chitosan improves insulin sensitivity as determined by theGoogle Scholar
  50. HF L, Narayanan K, Lim SX, Gao S, Leong MF, Wan AC (2012) A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials 33:2419–2430CrossRefGoogle Scholar
  51. Hiep LV, Thanh MT, Van DTH, Khanh VTP, Dzung NA (2008) Chitosan as a hopeful adjuvant for H5N1 influenza vaccine. J Chitin Chitosan 13(10):6–8Google Scholar
  52. Hong SP, Kim MH, Oh SW, Han CH, Kim YH (1998) ACE inhibitory and antihypertensive effect of chitosan oligosaccharides in SHR. Korean J Food Sci Technol 30(6):1476–1479Google Scholar
  53. Howard K, Kjems J (2006) RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticles system. Mol Ther 14:476–484PubMedCrossRefGoogle Scholar
  54. Huang RH, Mendis E, Rajapakse N, Kim SK (2006) Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci 78(20):2399–2408PubMedCrossRefGoogle Scholar
  55. Husain S, Al-Samadani KH, Najeeb S, Zafar MS, Khurshid Z, Zohaib S, Qasim SB (2017) Chitosan biomaterials for current and potential dental applications. Materials 10(6):602. https://doi.org/10.3390/ma10060602 CrossRefPubMedCentralPubMedGoogle Scholar
  56. Illum L, Gill J, Hinchcliffe M, Fisher AN, Davis SS (2001) Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev 51:81–96PubMedCrossRefGoogle Scholar
  57. Ishihara M, Nakanishi K, Ono K, Sato M, Kikuchi M, Saito Y, Yura H, Matsui T, Hattori H, Uenoyama M, Kurita A (2002) A Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23:833–840PubMedCrossRefGoogle Scholar
  58. Ito M, Ban A, Ishihara M (2000) Anti-ulcer effects of chitin and chitosan, healthy foods, in rats. Jpn J Pharmacol 82:218–225PubMedCrossRefGoogle Scholar
  59. Jain S, Sharma RK, Vyas SP (2006) Chitosan nanoparticles encapsulated vesicular systems for oral immunization: preparation, in-vitro and in-vivo characterization. J Pharm Pharmacol 58:303–310PubMedCrossRefGoogle Scholar
  60. Jang MJ, Kim DG, Jeong YI, Jang MK, Nah JW (2007) Preparation and characterization of low molecular weight water soluble chitosan gene carrier fractioned according to molecular weight. Polymer (Korea) 36:555–561Google Scholar
  61. Jauhari S, Dash AK (2006) A mucoadhesive in situ gel delivery system for paclitaxel. AAPS Pharm Sci Tech, 7: Article 53: E1–E6. http://www.aapspharmscitech.org/view.asp?art=pt070253
  62. Jayakumar R, Ramachandran R, Sudheesh Kumar PT, Divyarani VV, Srinivasan S, Chennazhi KP, Tamura H, Nair SV (2010) Fabrication of chitin–chitosan/nano ZrO(2) composite scaffolds for tissue engineering applications. Int J Biol Macromol 49:274–280CrossRefGoogle Scholar
  63. Je JY, Park PJ, Kim B, Kim SK (2006) Antihypertensive activity of chitin derivatives. Biopolymers. 15 83(3):250–254PubMedCrossRefGoogle Scholar
  64. Jeon YJ, Kim SK (2000a) Continuous production of chitooligosaccharides using a dual reactor system. Process Biochem 35(6):623–632CrossRefGoogle Scholar
  65. Jeon YJ, Kim SK (2000b) Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohyr Polym 41(2):133–141CrossRefGoogle Scholar
  66. Jeon Y, Kim SKJ (2002) Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J Microbiol Biotechnol 12:503–507Google Scholar
  67. Jeong YI, Kim DG, Jang MK, Nah JW (2008) Preparation and spectroscopic characterization of methoxy poly (ethylene glycol)-grafted water-soluble chitosan. Carbohydr Res 343:282–289PubMedCrossRefGoogle Scholar
  68. Jo GH, Jung WJ, Kuk JH, Oh KT, Kim YJ, Park RD (2008) Screening of protease-producing Serratia marcescens FS-3 and its application to deproteinization of crab shell waste for chitin extraction. Carbohydr Polym 74:504–508CrossRefGoogle Scholar
  69. Jollès P, Muzzarelli RAA (1999) Chitin and chitinases; Birkhauser Verlag: Basel, Switzerland.Google Scholar
  70. Jung W, Park R (2014) Bioproduction of chitooligosaccharides: present and perspectives. Mar Drugs 12:5328–5356. https://doi.org/10.3390/md12105328 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Jung WJ, Jo GH, Kuk JH, Kim KY, Park RD (2006) Extraction of chitin from red crab shell waste by cofermentation with Lactobacillus paracasei subsp. tolerans KCTC-3074 and Serratia marcescens FS-3. Appl Microbiol Biotechnol 71:234–237PubMedCrossRefGoogle Scholar
  72. Jung WJ, Jo GY, Kuk JH, Kim YJ, Oh KT, Park RD (2007a) Production of chitin from red crab shell waste by successive fermentation with Lactobacillus paracasei KCTC-3074 and Serratia marcescens FS-3. Carbohydr Polym 68:746–750CrossRefGoogle Scholar
  73. Jung WJ, Souleimanov A, Park RD, Smith DL (2007b) Enzymatic production of N-acetyl chitooligosaccharides by crude enzyme derived from Paenibacillus illioisensis KJA-424. Carbohydr Polym 67:256–259CrossRefGoogle Scholar
  74. Kao PM, Chen CI, Huang SC, Chang YC, Tsai PJ, Liu YC (2007) Development of continuous chitinase production process in a membrane bioreactor by Paenibacillus sp. CHE-N1. Process Biochem 42:606–611CrossRefGoogle Scholar
  75. Karadeniz F, Kim S (2014) Antidiabetic activities of chitosan and its derivatives: a mini review, chapter 3. In: Kim S (ed) Marine carbohydrates: fundamentals and applications, part B. Academic Press Publications, Amsterdam, pp 33–44CrossRefGoogle Scholar
  76. Karadeniz F, Artan M, Kong CS, Kim SK (2010) Chitooligosaccharides protect pancreatic β-cells from hydrogen peroxide-induced deterioration. Carbohydr Polym 82(1):143–147CrossRefGoogle Scholar
  77. Karagozlu MZ, Kim SK (2014) Anticancer effects of chitin and chitosan derivatives. Adv Food Nutri Res 72:215–225CrossRefGoogle Scholar
  78. Karzed K, Domenjoz R (1971) Effects of hexosamine derivatives and uronic acid derivatives on glycosaminoglycan metabolism of fibroblast cultures. Pharmocology 5:337–345Google Scholar
  79. Khanafari A, Marandi R, Sanatei S (2008) Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods. Iran J Environ Health Sci Eng 5:1–24Google Scholar
  80. Khoushab F, Yamabhai M (2010) Chitin research revisited. Mar Drugs 8:1988–2012PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kim IS, Park JW, Kwon IC, Baik BS, Cho BC (2002) Role of BMP, beta ig-h3, and chitosan in early bony consolidation in distraction osteogenesis in a dog model. Plast Reconstr Surg 109:1966–1977PubMedCrossRefGoogle Scholar
  82. Kim S (2010) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, New YorkCrossRefGoogle Scholar
  83. Kim SK, Rajapakse N (2005) Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydr Polym 62:357–368CrossRefGoogle Scholar
  84. Kim H-L, Park S-M, Cho G-S, Kim K-Y, Kim I-C (2010) Physicochemical characteristics, antimicrobial activity, ACE inhibitory activity of chitosan-salt, and its antihypertensive effect. Food Sci Biotechnol 19(3):777–784CrossRefGoogle Scholar
  85. Kim MS, You HJ, You MK, Kim NS, Shim BS, Kim HM (2005) Inhibitory effect of water-soluble chitosan on TNF-α and IL-8 secretion from HMC-1 cells. Immunopharmacol Immunotoxicol 26:401–409CrossRefGoogle Scholar
  86. Kondo Y, Nakatani A, Hayashi K, Ito M (2000) Low molecular weight chitosan prevents the progression of low dose streptozotocin-induced slowly progressive diabetes mellitus in mice. Biol Pharma Bull 23:1458–1464CrossRefGoogle Scholar
  87. Köping-Hoggard M, Tubulekas I, Guan H, Edwards K, Nilsson M, Vårum KM, Artursson P (2001) Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8:1108–1121PubMedCrossRefGoogle Scholar
  88. Köping-Höggård M, Mel’nikova YS, Vårum KM, Lindman B, Artursson P (2003) Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo. J Gene Med 5:130–141PubMedCrossRefGoogle Scholar
  89. Köping-Höggård M, Vårum KM, Issa M, Danielsen S, Christensen BE, Stokke BT, Artursson P (2004) Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther 11:1441–1452PubMedCrossRefGoogle Scholar
  90. Kuk JH, Jung WJ, Jo GH, Ahn JS, Kim KY, Park RD (2005a) Selective preparation of N-acetyl-D-glucosamine and N,N′-diacetylchitobiose from chitin using a crude enzyme preparation from Aeromonas sp. Biotechnol Lett 27:7–11PubMedCrossRefGoogle Scholar
  91. Kuk JH, Jung WJ, Jo GH, Kim YC, Kim KY, Park RD (2005b) Production of N-acetyl-β-D-glucosamine from chitin by Aeromonas sp. GJ-18 crude enzyme. Appl Microbiol Biotechnol 68:384–389PubMedCrossRefGoogle Scholar
  92. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  93. Kumirska J, Weinhold MX, Thöming J, Stepnowski P (2011) Biomedical activity of chitin/chitosan based materials – influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers 3:1875–1901CrossRefGoogle Scholar
  94. Kurakake M, You S, Nakagawa K, Sugihara M, Komaki T (2000) Properties of chitosanase from Bacillus cereus S1. Curr Microbiol 40:6–9PubMedCrossRefGoogle Scholar
  95. Kurita K (2006) Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226PubMedCrossRefGoogle Scholar
  96. Lan X, Ozawa N, Nishiwaki N, Kodaira R, Okazaki M, Shimosaka M (2004) Purification, cloning, and sequence analysis of β-N-acetylglucosaminidase from the chitinolytic bacterium Aeromonas hydrophila strain SUWA-9. Biosci Biotechnol Biochem 68:1082–1090PubMedCrossRefGoogle Scholar
  97. Li L, Zhang JL, Liu JN, Xia WS (2007) Effects of chitosan on serum lipid and fat liver. Chin J Mar Drugs 26(2):7–9Google Scholar
  98. Liang TW, Hsieh JL, Wang SL (2012) Production and purification of a protease, a chitosanase, and chitin oligosaccharides by Bacillus cereus TKU022 fermentation. Carbohydr Res 362:38–46PubMedCrossRefGoogle Scholar
  99. Lieder R, Thormodsson F, Ng CH, Einarsson JM, Gislason J, Petersen PH, Sigurjonsson OE (2012) Chitosan and chitin hexamers affect expansion and differentiation of mesenchymal stem cells differently. Int J Biol Macromol 51:675–680PubMedCrossRefGoogle Scholar
  100. Lien TS, Yu ST, Wu ST, Too JR (2007) Induction and purification of a thermophilic chitinase produced by Aeromonas sp. DYU-Too7 using glucosamine. Biotechnol Bioprocess Eng 12:610–617CrossRefGoogle Scholar
  101. Liu BL, Kao PM, Tzeng YM, Feng KC (2003) Production of chitinase from Verticillium lecanii F091 using submerged fermentation. Enzym Microbial Technol 33:410–415CrossRefGoogle Scholar
  102. Liu JN, Xia WS, Zhang JL (2008a) Effects of chitosans physico-chemical properties on binding capacities of lipid and bile salts in vitro. Chin Food Sci 29(1):45–49CrossRefGoogle Scholar
  103. Liu JN, Zhang JL, Xia WS (2008b) Hypocholesterolemic effects of different chitosan samples in vitro and in vivo. Food Chem 107:419–425CrossRefGoogle Scholar
  104. Liu L, Liu Y, Shin HD, Chen R, Li J, Du G, Chen J (2013) Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives. Appl Microbiol Biotechnol 97:6149–6158PubMedCrossRefGoogle Scholar
  105. Louise CA, Pedro A, Charles AH (1999) Process for producing N-acetyl-D-glucosamine. US Patent NO. 5998173Google Scholar
  106. Lu HF, Narayanan K, Lim SX, Gao S, Leong MF, Wan AC (2012) A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials 33:2419–2430PubMedCrossRefGoogle Scholar
  107. MacLaughlin FC, Mumper RJ, Wang J, Tagliaferri JM, Gill I, Hinchcliffe M, Rolland AP (1998) Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Release 56:259–272PubMedCrossRefGoogle Scholar
  108. Maeda Y, Kimura Y (2004) Antitumor effects of various low-molecular-weight chitosans are due to increased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma 180-bearing mice. J Nutr 134:945–950PubMedCrossRefGoogle Scholar
  109. Mahmoud NS, Ghaly AE, Arab F (2007) Unconventional approach for demineralization of deproteinized crustacean shells for chitin production. Am J Biochem Biotechnol 3:1–9CrossRefGoogle Scholar
  110. Makino A, Ohmae M, Kobayashi S (2006) Chitinase-catalyzed copolymerization to a chitin derivative having glucosamine unit in controlled proportion. Polym J 38:1182–1188CrossRefGoogle Scholar
  111. Mao X, Guo N, Sun J, Xue C (2017) Comprehensive utilization of shrimp waste based on biotechnological methods: a review. J Clean Prod 143:814–823CrossRefGoogle Scholar
  112. Minagawa T, Okamura Y, Shigemasa Y, Minami S, Okamoto Y (2007) Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydr Polym 67:640–644CrossRefGoogle Scholar
  113. Mincea M, Negrulescu A, Ostafe V (2012) Preparation, modification, and applications of chitin nanowhiskers: a review. Rev Adv Mat Sci 30:225–242Google Scholar
  114. Miura T, Usami M, Tsuura Y, Ishida H, Seino Y (1995) Hypoglycemic and hypolipidemic effect of chitosan in normal and neonatal streptozotocin-induced diabetic mice. Biol Pharma Bull 18:1623–1625CrossRefGoogle Scholar
  115. Mohire NC, Yadav AV (2010) Chitosan-based polyherbal toothpaste: as novel oral hygiene product. Indian J Dent Res 21:380–384PubMedCrossRefGoogle Scholar
  116. Moon JS, Kim HK, Koo HC, Joo Y-S, Nam H, Park YH, Kang M-I (2007) The antibacterial and immunostimulating effects of chitosan-oligosaccharides against infection by Staphylococcus aureus isolated from bovine mastitis. Appl Microbiol Biotechnol 75:989–998PubMedCrossRefGoogle Scholar
  117. Mori T, Murakami M, Okumura M, Kadosawa T, Uede T, Fujinaga T (2005) Mechanism of macrophage activation by chitin derivatives. J Vet Med Sci 67(1):51–56PubMedCrossRefGoogle Scholar
  118. Mourya VK, Inamdar NN, Choudhari YM (2011) Chitooligosaccharides: synthesis, characterization and applications. J Polym Scie Part A 53:583–612Google Scholar
  119. Murao S, Kuwada T, Itoh H, Oyama H, Shin T (1992) Purification and characterization of a novel type of chitinase from Vibrio alginolyticus TK-22. Biosci Biotechnol Biochem 56:368–369CrossRefGoogle Scholar
  120. Muzzarelli RAA (1997) Chitosan as dietary food additives. In: Goosen MFA (ed) Applications of chitin and chitosan. Technomic, Lancaster, pp 115–127Google Scholar
  121. Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182CrossRefGoogle Scholar
  122. Nakagawa YS, Oyama Y, Kon N, Nikaido M, Tanno K, Kogawa J, Inomata S, Masui A, Yamamura A, Kawaguchi M, Matahira Y, Totani K (2011) Development of innovative technologies to decrease the environmental burdens associated with using chitin as a biomass resource: mechanochemical grinding and enzymatic degradation. Carbohydr Polym 83:1843–1849CrossRefGoogle Scholar
  123. Ngo DN, Kim MM, Kim SK (2008) Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohydr Polym 74(2):228–234CrossRefGoogle Scholar
  124. Ngo DN, Lee SH, Kim MM (2009) Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J Funct Foods 1:188–198CrossRefGoogle Scholar
  125. Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I (1984) Immunological activity of chitin and its derivatives. Vaccine 2(1):93–99PubMedCrossRefGoogle Scholar
  126. No HK, Hur EY (1998) Control of foam formation by antifoam during demineralization of crustacean shell in preparation of chitin. J Agric Food Chem 46:3844–3846CrossRefGoogle Scholar
  127. Noh HK, Lee SW, Kim JM, JE O, Kim KH, Chung CP, Choi SC, Park WH, Min BM (2006) Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 27:3934–3944PubMedCrossRefGoogle Scholar
  128. No HK, Cho YI, Meyers SP (1996) Dye binding capacity of commercial chitin products. J Agric Food Chem 44:1939–1942CrossRefGoogle Scholar
  129. Obara K, Ishiharab M, Ozeki Y, Ishizuka T, Hayashi T, Nakamura S, Saito Y, Yura H, Matsui T, Hattori H, Takase B, Ishihara M, Kikuchi M, Maehara T (2005) Controlled release of paclitaxel from photocrosslinked chitosan hydrogels and its subsequent effect on subcutaneous tumor growth in mice. J Control Release 110:79–89PubMedCrossRefGoogle Scholar
  130. Oh KT, Kim YJ, Nguyen VN, Jung WJ, Park RD (2007) Demineralization of crab shell waste by Pseudomonas aeruginosa F722. Process Biochem 42:1069–1074CrossRefGoogle Scholar
  131. Okamoto Y, Inoue A, Miyatake K, Ogihara K, Shigemasa Y, Minami S (2003a) Effects of chitin/chitosan and their oligomers/monomers on migrations of macrophages. Macromol Biosci 3:587–590CrossRefGoogle Scholar
  132. Okamoto Y, Yano R, Miyatake K, Tomohiro I, Shigemasa Y, Minami S (2003b) Effects of chitin and chitosan on blood coagulation. Carbohydr Polym 53:337–342CrossRefGoogle Scholar
  133. Okuda H, Kato H, Tsujita T (1997) Antihypertensive and antihyperlipemic actions of chitosan. J Chitin Chitosan 2:49–59Google Scholar
  134. Pachapur V, Guemiza K, Rouissi T, Sarmaa SJ, Brara SK (2016) Novel biological and chemical methods of chitin extraction from crustacean waste using saline water. J Chem Technol Biotechnol 91:2331–2339CrossRefGoogle Scholar
  135. Park PJ, Je JY, Kim SK (2003) Angiotensin I converting enzyme (ACE) inhibitory activity of hetero- chitooligosaccharides prepared from partially different deacetylated chitosans. J Agric Food Chem 51:4930–4934PubMedCrossRefGoogle Scholar
  136. Park PJ, Je JY, Byun HG, Moon SH, Kim SK (2004a) Antimicrobial activity of heterochitosans and their oligosaccharides with different molecular weights. J Micobiol Biotechnol 14:317–323Google Scholar
  137. Park PJ, Lee HK, Kim SK (2004b) Preparation of hetero chitooligosaccharides and their antimicrobial activity on Vibrio parahaemolyticus. J Micobiol Biotechnol 14:41–47Google Scholar
  138. Park YJ, Lee YM, Park SN, Sheen SY, Chung CP, Lee SJ (2000) Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials 2:153–159CrossRefGoogle Scholar
  139. Patel MP, Patel RR, Patel JK (2010) Chitosan mediated targeted drug delivery system: a review. J Pharm Pharm Sci 13(4):536–557PubMedCrossRefGoogle Scholar
  140. Paul T, Halder SK, Das A, Ghosh K, Mandal A, Payra P, Barman P, Das Mohapatra PK, Pati BR, Mondal KC (2015) Production of chitin and bioactive materials from Black tiger shrimp (Penaeus monodon) shell waste by the treatment of bacterial protease cocktail. 3 Biotech 5(4):483–493PubMedCrossRefGoogle Scholar
  141. Percot A, Viton C, Domard A (2003) Characterization of shrimp shell deproteinization. Biomacromolecules 4:1380–1385PubMedCrossRefGoogle Scholar
  142. Pichyangkura R, Kudan S, Kultiyawong K, Sukwattanasinitt M, Aiba SI (2002) Quantitative production of 2-acetamido-2- deoxy-D-glucose from crystalline chitin by bacterial chitinase. Carbohydr Res 337:557–559PubMedCrossRefGoogle Scholar
  143. Qingming Y, Xianhui P, Weibao K, Hong Y, Yidan S, Li Z, Yanan Z, Yuling Y, Lan D, Guoan L (2010) Antioxidant activities of malt extract from barley (Hordeum vulgare L.) toward various oxidative stress in vitro and in vivo. Food Chem 118:84–89CrossRefGoogle Scholar
  144. de Queiroz Antonino RSCM, Lia Fook BR, de Oliveira Lima VA, de Farias Rached RÍ, Lima EP, da Silva Lima RJ, Peniche Covas CA, Lia Fook MV (2017) Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar Drugs 15:141. https://doi.org/10.3390/md15050141
  145. Rao MS, Stevens WF (2005) Chitin production by Lactobacillus fermentation of shrimp biowaste in a drum reactor and its chemical conversion to chitosan. J Chem Technol Biotechnol 80:1080–1087CrossRefGoogle Scholar
  146. Rathore AS, Gupta RD (2015) Chitinases from bacteria to human: properties, applications, and future perspectives. Enzym Res 2015:791907. https://doi.org/10.1155/2015/791907 CrossRefGoogle Scholar
  147. Ravi Kumar MNV (1999) Chitin and chitosan fibres: a review. Bull Mat Sci 22:905–915CrossRefGoogle Scholar
  148. Razdan A, Pettersson D (1996) Hypolipidaemic, gastrointestinal and related responses of broiler chickens to chitosans of different viscosity. Br J Nutri 76:387–397CrossRefGoogle Scholar
  149. Read RC, Naylor SC, Potter CW, Bond J, Jabbal-Gill I, Fisher A, Illum L, Jennings R (2005) Effective nasal influenza vaccine delivery using chitosan. Vaccine 23:4367–4374PubMedCrossRefGoogle Scholar
  150. Reese ET, Siu RGH, Levinson HS (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59:485–497PubMedPubMedCentralGoogle Scholar
  151. Rhazi M, Desbrie’res J, Tolaimate A, Rinaudo M, Vottero P, Alagui A, Meray ME (2002) Influence of the nature of the metal ions on the complexation with chitosan. Application to the treatment of liquide waste. Eur Polym J 38:1523–1530CrossRefGoogle Scholar
  152. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRefGoogle Scholar
  153. Rovati L. Casula P, Mascherpa S (1972) N-acetylglucosamine for treating degenerative afflictions of the joints. US Patent NO. 3697652Google Scholar
  154. Roy K, Mao HQ, Huang SK, Leong KW (1999) Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5:387–391PubMedCrossRefPubMedCentralGoogle Scholar
  155. Ruel-Gariepy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, Leroux JC (2004) A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 57:53–63PubMedCrossRefGoogle Scholar
  156. Saikia C, Gogoi P, Maji TK (2015) Chitosan: a promising biopolymer in drug delivery applications. J Mol Genet Med S4:006. https://doi.org/10.4172/1747-0862.S4-006 CrossRefGoogle Scholar
  157. Salah R, Michaud P, Mati F, Harrat Z, Lounici H, Abdi N, Drouiche N, Mameri N (2013) Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 52:333–339PubMedCrossRefGoogle Scholar
  158. Salvatore S, Heuschkel R, Tomlin S, Davies SE, Edwards S, Walker-Smith JA, French I, Murch SH (2000) A pilot study of N-acetyl glucosamine, a nutritional substrate for glycosaminoglycan synthesis, in paediatric chronic inflammatory bowel disease. Aliment Pharmacol Ther 14:1567–1579PubMedCrossRefGoogle Scholar
  159. Santos-Moriano P, Woodley JM, Plou FJ (2016) Continuous production of chitooligosaccharides by an immobilized enzyme in a dual-reactor system. J Mol Catal B Enzym 133:211–217CrossRefGoogle Scholar
  160. Sashiwa H, Fujishima S, Yamano N, Kawasaki N, Nakayama A, Muraki E, Hiraga K, Oda K, Aiba S (2002) Production of N-acetyl-D-glucosamine from α-chitin by crude enzymes from Aeromonas hydrophila H2330. Carbohydr Res 337:761–763PubMedCrossRefGoogle Scholar
  161. Shahidi F, Vidana Arachchi JK, Jeon Y-J (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51CrossRefGoogle Scholar
  162. Shi Q, Tiera MJ, Zhang X, Dai K, Benderdour M, Fernandes JC (2011) Chitosan-DNA/siRNA nanoparticles for gene therapy, non-viral gene therapy, Prof. Xubo Yuan (Ed.), InTech. https://doi.org/10.5772/21903 Google Scholar
  163. Shibata Y, Metzeger W, Myrvik Q (1997a) Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan. J Immunol 159:2462–2467PubMedGoogle Scholar
  164. Shibata Y, Foster LA, Metzger WJ, Myrvik QN (1997b) Alveolar macrophage priming by intravenous administration of chitin particles, polymers of N-acetyl-D-glucosamine, in mice. Infect Immun 65:1734–1741PubMedPubMedCentralGoogle Scholar
  165. Sini TK, Santhosh S, Mathew PT (2007) Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydr Res 342:2423–2429PubMedCrossRefGoogle Scholar
  166. Sugano M, Fujikawa T, Hiratsuji Y, Nakashima K, Fukuda N, Hasegawa Y (1980) A novel use of chitosan as a hypocholesterolemic agent in rats. Am J Clin Nutri 33:787–793CrossRefGoogle Scholar
  167. Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr Res 151:403–408PubMedCrossRefGoogle Scholar
  168. Ta HT, Dass CR, Larson I, Choong PFM, Dunstan DE (2009) A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy. Biomaterials. https://doi.org/10.1016/j.biomaterials.2009.05.035
  169. Talent JM, Gracy RW (1996) Pilot study of oral polymeric N-acetyl-D-glucosamine as a potential treatment for patients with osteoarthritis. Clin Ther 18:1184–1190PubMedCrossRefGoogle Scholar
  170. Tamai Y, Miyatake K, Okamoto Y, Takamori Y, Sakamoto K, Minami S (2003) Enhanced healing of cartilaginous injuries by N-acetyl-D-glucosamine and glucuronic acid. Carbohydr Polym 54:251–262CrossRefGoogle Scholar
  171. Teng WL, Khor E, Tan TK, Lim LY, Tan SC (2001) Concurrent production of chitin from shrimp shells and fungi. Carbohydr Res 332:305–316PubMedCrossRefGoogle Scholar
  172. Terayama H, Takahashi S, Kuzuhara H (1993) Large scale preparation of N,N′-diacetylchitobiose by enzymatic degradation of chitin and its chemical modification. J Carbohydr Chem 12:81–93CrossRefGoogle Scholar
  173. Thadathil N, Velappan SP (2014) Recent developments in chitosanase research and its biotechnological applications: a review. Food Chem 150:392–399PubMedCrossRefGoogle Scholar
  174. Thamthiankul S, Suan-Ngay S, Tantimavanich S, Panbangred W (2001) Chitinase from Bacillus thuringiensis subsp pakistani. Appl Microbiol Biotechnol 56:395–401PubMedCrossRefGoogle Scholar
  175. Trung TS, Duy Bao HN (2015) Physicochemical properties and antioxidant activity of chitin and chitosan prepared from Pacific white shrimp waste. Int J Carbohydr Chem 2015:706259. 6CrossRefGoogle Scholar
  176. Truong T, Hausler R, Monette F, Niquette P (2007) Fishery industrial waste valorization for the transformation of chitosan by hydrothermo-chemical method. Rev Sci Eau 20:253–262Google Scholar
  177. Uragami T, Tokura S (eds) (2006) Material science of chitin and chitosan. Springer, TokyoGoogle Scholar
  178. Usui T, Matsu H, Isobe K (1990) Enzymic synthesis of useful chito-oligosaccharides utilizing transglycosylation by chitinolytic enzymes in a buffer containing ammonium sulfate. Carbohydr Res 203:65–77PubMedCrossRefGoogle Scholar
  179. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74PubMedPubMedCentralCrossRefGoogle Scholar
  180. Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VGH (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222PubMedCrossRefPubMedCentralGoogle Scholar
  181. Villa-Lerma G, Gonzalez-Marquez H, Gimeno M, Lopez-Luna A, Barzana E, Shirai K (2013) Ultrasonication and steam-explosion as chitin pretreatments for chitin oligosaccharide production by chitinases of Lecanicillium lecanii. Bioresour Technol 146:794–798PubMedCrossRefGoogle Scholar
  182. Waldeck J, Daum G, Bisping B, Meinhardt F (2006) Isolation and molecular characterization of chitinase-deficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin. Appl Environ Microbiol 72:7879–7885PubMedPubMedCentralCrossRefGoogle Scholar
  183. Wan AC, Tai BC (2013) CHITIN-a promising biomaterial for tissue engineering and stem cell technologies. Biotechnol Advances 31(8):1776–1785CrossRefGoogle Scholar
  184. Wang SL, Chio SH (1998) Deproteination of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-1. Enzym Microb Technol 22:629–633CrossRefGoogle Scholar
  185. Wang SL, Lin TY, Yen YH, Liao HF, Chen YJ (2006) Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydr Res 341:2507–2515PubMedCrossRefGoogle Scholar
  186. Wang Z, Zheng L, Yang S, Niu R, Chu E, Lin X (2007) N-acetylchitooligosaccharide is a potent angiogenic inhibitor both in vivo and in vitro. Biochem Biophys Res Commun 357:26–31PubMedCrossRefGoogle Scholar
  187. Wang SL, Huang TY, Wang CY, Liang TW, Yen YH, Sakata Y (2008) Bioconversion of squid pen by Lactobacillus paracasei subsp. paracasei TKU010 for the production of proteases and lettuce growth enhancing biofertilizers. Bioresour Technol 99:5436–5443PubMedCrossRefGoogle Scholar
  188. Wang SL, Lin CL, Liang TW, Liu KC, Kuo YH (2009a) Conversion of squid pen by Serratia ureilytica for the production of enzymes and antioxidants. Bioresour Technol 100:316323PubMedCrossRefGoogle Scholar
  189. Wang SL, Liou JY, Liang TW, Liu KC (2009b) Conversion of squid pen by using Serratia sp. TKU020 fermentation for the production of enzymes, antioxidants, and N-acetyl chitooligosaccharides. Process Biochem 44:854–861CrossRefGoogle Scholar
  190. Wang SL, Lin CL, Liang TW, Liu KC, Kuo YH (2009c) Conversion of squid pen by Serratia ureilytica for the production of enzymes and antioxidants. Bioresour Technol 100:316–323PubMedCrossRefGoogle Scholar
  191. Wang SL, Chang TJ, Liang TW (2010a) Conversion and degradation of shellfish wastes by Serratia sp. TKU016 fermentation for the production of enzymes and bioactive materials. Biodegradation 21:321–333PubMedCrossRefGoogle Scholar
  192. Wang SL, Hsu WH, Liang TW (2010b) Conversion of squid pen by Pseudomonas aeruginosa K187 fermentation for the production of N-acetyl chitooligosaccharides and biofertilizers. Carbohydr Res 345:880–885PubMedCrossRefGoogle Scholar
  193. Wang SL, Liu CP, Liang TW (2012) Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydr Pol 90:1305–1313CrossRefGoogle Scholar
  194. Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocol 25:170–179CrossRefGoogle Scholar
  195. Xiong C, Wu H, Wei P, Pan M, Tuo Y, Kusakabe I, Du Y (2009) Potent angiogenic inhibition effects of deacetylated chitohexaose separated from chitooligosaccharides and its mechanism of action in vitro. Carbohydr Res 344:1975–1983PubMedCrossRefGoogle Scholar
  196. Xu QS, Dou H, Wei P, Tan CY, Yun XJ, Wu YH, Bal XF, Ma XJ, Du YG (2008) Chitooligosaccharides induce apoptosis of human hepatocellular carcinoma cells via up-regulation of Bax. Carbohydr Polym 71:509–514CrossRefGoogle Scholar
  197. Yan Q, Fong SS (2015) Bacterial chitinase: nature and perspectives for sustainable bioproduction. Bioresour Bioprocess 2:31. https://doi.org/10.1186/s40643-015-0057-5 CrossRefGoogle Scholar
  198. Yang JK, Shih IL, Tzeng YM, Wang SL (2000) Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzym Microb Technol 26:406–413CrossRefGoogle Scholar
  199. Yen MT, Yang JH, Mau JL (2008) Antioxidant properties of chitosan from crab shells. Carbohydr Polym 74:840–844CrossRefGoogle Scholar
  200. Yen MT, Yang JH, Mau JL (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75:15–21CrossRefGoogle Scholar
  201. Yoon HJ, Moon ME, Park HS, Im SY, Kim YH (2007) Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells. Biochem Biophys Res Commun 358:954–959PubMedCrossRefGoogle Scholar
  202. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. structure, properties and applications. Mar Drugs 13:1133–1174. https://doi.org/10.3390/md13031133 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Yusof NLBM, Wee A, Lim LY, Khor E (2003) Flexible chitin films as potential wound-dressing materials: wound model studies. J Biomed Mater Res 66A:224–232CrossRefGoogle Scholar
  204. Zaku SG, Emmanuel SA, Aguzue OC, Thomas SA (2011) Extraction and characterization of chitin; a functional biopolymer obtained from scales of common carp fish (Cyprinus carpio l.): a lesser known source. Afr J Food Sci 5:478–483Google Scholar
  205. Zhang XY, Dae AL, Zhang XK, Kuroiwa K (2000) Purification and characterization of chitosanase and exo-β-D-glucosaminidase from Koji Mold, Aspergillus oryzae IAM2660. Biosci Biotechnol Biochem 64:1896–1902PubMedCrossRefGoogle Scholar
  206. Zhang W, Yang H, Kong X, Mohapatra S, San Juan-Vergara H, Hellermann G, Behera S, Singam R, Lockey RF, Mohapatra SS (2005) Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat Med 11:L56–L62CrossRefGoogle Scholar
  207. Zhang Y, Lee ET, Devereux RB, Yeh J, Best LG, Fabsitz RR, Howard BV (2006) Prehypertension, diabetes, and cardiovascular disease risk in a population based sample: the strong heart study. Hypertension 47:410–414PubMedCrossRefGoogle Scholar
  208. Zhang J, Xia W, Liu P, Cheng Q, Tahirou T, Gu W, Li B (2010) Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 8:1962–1987. https://doi.org/10.3390/md8071962 CrossRefPubMedPubMedCentralGoogle Scholar
  209. Zhao Y, Park R, Muzzarelli RAA (2010) Chitin deacetylases: properties and applications. Mar Drugs 8:24–46. https://doi.org/10.3390/md8010024 CrossRefPubMedPubMedCentralGoogle Scholar
  210. Zhou K, Xia W, Zhang C, Yu L (2006) In vitro binding of bile acids and triglycerides by selected chitosan preparations and their physicochemical properties. LWT- Food Sci Technol 39:1087–1092CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of MicrobiologyVidyasagar UniversityMidnaporeIndia

Personalised recommendations