Advertisement

Perspectives on Continuous Glucose Monitoring Technology

  • F. Gao
  • W. Jia
Chapter

Abstract

Continuous glucose monitoring (CGM) technology has been widely used in clinical practice. With the innovation and the development of technologies, CGM has continually become more ideal. Compared with retrospective CGM, real-time CGM technology improves the timeliness of glycemic monitoring and is able to sound an alarm when glucose levels are too low or too high, allowing physicians and patients to take appropriate measures in a timely manner. The joint use of real-time CGM and a continuous subcutaneous insulin infusion (CSII) system makes an artificial pancreas possible. At present, the low-glucose suspend (LGS) system and predictive low-glucose suspend (PLGS) system have entered clinical trials, and the effectiveness and safety of a closed-loop artificial pancreas have also been confirmed by a number of clinical trials. With the improvement of the intelligent algorithm, the artificial pancreas will duplicate the function of the pancreas more closely, and finally will achieve intelligent, individualized glucose management.

Keywords

Real-time continuous glucose monitoring Low-glucose suspend system Predictive low-glucose suspend system Artificial pancreas Intelligent algorithm 

References

  1. 1.
    Agrawal P, Welsh JB, Kannard B, Askari S, Yang Q, Kaufman FR. Usage and effectiveness of the low glucose suspend feature of the Medtronic Paradigm Veo insulin pump. J Diabetes Sci Technol. 2011;5:1137–41.  https://doi.org/10.1177/193229681100500514.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bergenstal RM, Klonoff DC, Garg SK, Bode BW, Meredith M, Slover RH, Ahmann AJ, Welsh JB, Lee SW, Kaufman FR, ASPIRE In-Home Study Group. Threshold-based insulin-pump interruption for reduction of hypoglycemia. N Engl J Med. 2013;369:224–32.  https://doi.org/10.1056/NEJMoa1303576.CrossRefPubMedGoogle Scholar
  3. 3.
    Ly TT, Nicholas JA, Retterath A, Lim EM, Davis EA, Jones TW. Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial. JAMA. 2013;310:1240–7.  https://doi.org/10.1001/jama.2013.277818.CrossRefPubMedGoogle Scholar
  4. 4.
    Danne T, Tsioli C, Kordonouri O, Blaesig S, Remus K, Roy A, Keenan B, Lee SW, Kaufman FR. The PILGRIM study: in silico modeling of a predictive low glucose management system and feasibility in youth with type 1 diabetes during exercise. Diabetes Technol Ther. 2014;16:338–47.  https://doi.org/10.1089/dia.2013.0327.CrossRefPubMedGoogle Scholar
  5. 5.
    Battelino T, Nimri R, Dovc K, Phillip M, Bratina N. Prevention of hypoglycemia with predictive low glucose insulin suspension in children with type 1 diabetes: a randomized controlled trial. Diabetes Care. 2017;40:764–70.  https://doi.org/10.2337/dc16-2584.CrossRefPubMedGoogle Scholar
  6. 6.
    Biester T, Kordonouri O, Holder M, Remus K, Kieninger-Baum D, Wadien T, Danne T. “Let the algorithm do the work”: reduction of hypoglycemia using sensor-augmented pump therapy with predictive insulin suspension (smartguard) in pediatric type 1 diabetes patients. Diabetes Technol Ther. 2017;19:173–82.  https://doi.org/10.1089/dia.2016.0349.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hovorka R, Allen JM, Elleri D, Chassin LJ, Harris J, Xing D, Kollman C, Hovorka T, Larsen AM, Nodale M, De Palma A, Wilinska ME, Acerini CL, Dunger DB. Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. Lancet. 2010;375:743–51.  https://doi.org/10.1016/S0140-6736(09)61998-X.CrossRefPubMedGoogle Scholar
  8. 8.
    Elleri D, Allen JM, Kumareswaran K, Leelarathna L, Nodale M, Caldwell K, Cheng P, Kollman C, Haidar A, Murphy HR, Wilinska ME, Acerini CL, Dunger DB, Hovorka R. Closed-loop basal insulin delivery over 36 hours in adolescents with type 1 diabetes: randomized clinical trial. Diabetes Care. 2013;36:838–44.  https://doi.org/10.2337/dc12-0816.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Phillip M, Battelino T, Atlas E, Kordonouri O, Bratina N, Miller S, Biester T, Stefanija MA, Muller I, Nimri R, Danne T. Nocturnal glucose control with an artificial pancreas at a diabetes camp. N Engl J Med. 2013;368:824–83.  https://doi.org/10.1056/NEJMoa1206881.CrossRefPubMedGoogle Scholar
  10. 10.
    Hovorka R, Elleri D, Thabit H, Allen JM, Leelarathna L, El-Khairi R, Kumareswaran K, Caldwell K, Calhoun P, Kollman C, Murphy HR, Acerini CL, Wilinska ME, Nodale M, Dunger DB. Overnight closed-loop insulin delivery in young people with type 1 diabetes: a free-living, randomized clinical trial. Diabetes Care. 2014;37:1204–11.  https://doi.org/10.2337/dc13-2644.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bergenstal RM, Garg S, Weinzimer SA, Buckingham BA, Bode BW, Tamborlane WV, Kaufman FR. Safety of a hybrid closed-loop insulin delivery system in patients with type 1 diabetes. JAMA. 2016;316:1407–8.  https://doi.org/10.1001/jama.2016.11708.CrossRefPubMedGoogle Scholar
  12. 12.
    Garg SK, Weinzimer SA, Tamborlane WV, Buckingham BA, Bode BW, Bailey TS, Brazg RL, Ilany J, Slover RH, Anderson SM, Bergenstal RM, Grosman B, Roy A, Cordero TL, Shin J, Lee SW, Kaufman FR. Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol Ther. 2017;19:155–63.  https://doi.org/10.1089/dia.2016.0421.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Stewart ZA, Wilinska ME, Hartnell S, Temple RC, Rayman G, Stanley KP, Simmons D, Law GR, Scott EM, Hovorka R, Murphy HR. Closed-loop insulin delivery during pregnancy in women with type 1 diabetes. N Engl J Med. 2016;375:644–54.  https://doi.org/10.1056/NEJMoa1602494.CrossRefPubMedGoogle Scholar
  14. 14.
    Haidar A, Legault L, Messier V, Mitre TM, Leroux C, Rabasa-Lhoret R. Comparison of dual-hormone artificial pancreas, single-hormone artificial pancreas, and conventional insulin pump therapy for glycaemic control in patients with type 1 diabetes: an open-label randomised controlled crossover trial. Lancet Diabetes Endocrinol. 2015;3:17–26.  https://doi.org/10.1016/S2213-8587(14)70226-8.CrossRefPubMedGoogle Scholar
  15. 15.
    Russell SJ, Hillard MA, Balliro C, Magyar KL, Selagamsetty R, Sinha M, Grennan K, Mondesir D, Ehklaspour L, Zheng H, Damiano ER, El-Khatib FH. Day and night glycaemic control with a bionic pancreas versus conventional insulin pump therapy in preadolescent children with type 1 diabetes: a randomised crossover trial. Lancet Diabetes Endocrinol. 2016;4:233–43.  https://doi.org/10.1016/S2213-8587(15)00489-1.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Russell SJ, El-Khatib FH, Sinha M, Magyar KL, McKeon K, Goergen LG, Balliro C, Hillard MA, Nathan DM, Damiano ER. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N Engl J Med. 2014;371:313–25.  https://doi.org/10.1056/NEJMoa1314474.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bothe MK, Dickens L, Reichel K, Tellmann A, Ellger B, Westphal M, Faisal AA. The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas. Expert Rev Med Devices. 2013;10:661–73.  https://doi.org/10.1586/17434440.2013.827515.CrossRefPubMedGoogle Scholar
  18. 18.
    Bequette BW. A critical assessment of algorithms and challenges in the development of a closed-loop artificial pancreas. Diabetes Technol Ther. 2005;7:28–47.  https://doi.org/10.1089/dia.2005.7.28.CrossRefPubMedGoogle Scholar
  19. 19.
    Ginsberg BH. The FDA panel advises approval of the first continuous glucose sensor. Diabetes Technol Ther. 1999;1:203–4.  https://doi.org/10.1089/152091599317431.CrossRefPubMedGoogle Scholar
  20. 20.
    Baek YH, Jin HY, Lee KA, Kang SM, Kim WJ, Kim MG, Park JH, Chae SW, Baek HS, Park TS. The correlation and accuracy of glucose levels between interstitial fluid and venous plasma by continuous glucose monitoring system. Korean Diabetes J. 2010;34:350–8.  https://doi.org/10.4093/kdj.2010.34.6.350.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Klueh U, Liu Z, Feldman B, Henning TP, Cho B, Ouyang T, Kreutzer D. Metabolic biofouling of glucose sensors in vivo: role of tissue microhemorrhages. J Diabetes Sci Technol. 2011;5:583–95.  https://doi.org/10.1177/193229681100500313.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kenneth Ward W. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J Diabetes Sci Technol. 2008;2:768–77.  https://doi.org/10.1177/193229680800200504.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wentholt IM, Vollebregt MA, Hart AA, Hoekstra JB, DeVries JH. Comparison of a needle-type and a microdialysis continuous glucose monitor in type 1 diabetic patients. Diabetes Care. 2005;28:2871–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Scientific and Technical Publishers 2018

Authors and Affiliations

  1. 1.Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University, Affiliated Sixth People’s HospitalShanghaiChina

Personalised recommendations