Advertisement

Using Continuous Glucose Monitoring for Steroid-Induced Diabetes

  • J. Y. Lu
  • W. Jia
Chapter

Abstract

The prevalence of steroid diabetes, also known as steroid-induced diabetes or glucocorticoid-induced diabetes, has varied widely among studies. Excessive exogenous glucocorticoids can reduce insulin sensitivity and impair islet function, thereby increasing blood glucose. Excessive endogenous glucocorticoids (commonly seen in Cushing’s syndrome) share a similar mechanism in abnormalities of glucose metabolism and are also introduced in this chapter. Unlike common types of diabetes, steroid diabetes has its own unique glycemic characteristics. In cases of steroid diabetes caused by once-daily morning administration of prednisone, patients typically present with predominant postprandial hyperglycemia (especially after lunch and dinner) and mildly elevated fasting blood glucose or even hypoglycemia. Therefore, special attention should be paid in such patients to monitor postprandial blood glucose in order to facilitate timely diagnosis. This chapter introduces the glycemic characteristics of steroid diabetes and Cushing’s syndrome as well as the corresponding screening and treatment strategies in five practical cases.

Keywords

Steroid diabetes Cushing’s syndrome Postprandial blood glucose Continuous glucose monitoring 

References

  1. 1.
    Xiang KS. Special types of diabetes mellitus. Shanghai: Shanghai Scientific and Technical; 2011.Google Scholar
  2. 2.
    Hwang JL, Weiss RE. Steroid-induced diabetes: a clinical and molecular approach to understanding and treatment. Diabetes Metab Res Rev. 2014;30:96–102.  https://doi.org/10.1002/dmrr.2486.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ingle DJ, Winter HA, Li CH, Evans HM. Production of glycosuria in normal rats by means of adrenocorticotrophic hormone. Science. 1945;101:671–2.  https://doi.org/10.1126/science.101.2635.671.CrossRefPubMedGoogle Scholar
  4. 4.
    Munir A, Newell-Price J. Management of diabetes mellitus in Cushing’s syndrome. Neuroendocrinology. 2010;92(Suppl 1):82–5.  https://doi.org/10.1159/000314316.CrossRefPubMedGoogle Scholar
  5. 5.
    Blackburn D, Hux J, Mamdani M. Quantification of the risk of corticosteroid-induced diabetes mellitus among the elderly. J Gen Intern Med. 2002;17:717–20.  https://doi.org/10.1046/j.1525-1497.2002.10649.x.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gulliford MC, Charlton J, Latinovic R. Risk of diabetes associated with prescribed glucocorticoids in a large population. Diabetes Care. 2006;29:2728–9.  https://doi.org/10.2337/dc06-1499.CrossRefPubMedGoogle Scholar
  7. 7.
    Jin JY, DuBois DC, Almon RR, Jusko WJ. Receptor/gene-mediated pharmacodynamic effects of methylprednisolone on phosphoenolpyruvate carboxykinase regulation in rat liver. J Pharmacol Exp Ther. 2004;309:328–39.  https://doi.org/10.1124/jpet.103.061515.CrossRefPubMedGoogle Scholar
  8. 8.
    Vander Kooi BT, Onuma H, Oeser JK, Svitek CA, Allen SR, Vander Kooi CW, Chazin WJ, O’Brien RM. The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements. Mol Endocrinol. 2005;19:3001–22.  https://doi.org/10.1210/me.2004-0497.CrossRefPubMedGoogle Scholar
  9. 9.
    Kraus-Friedmann N. Hormonal regulation of hepatic gluconeogenesis. Physiol Rev. 1984;64:170–259.CrossRefPubMedGoogle Scholar
  10. 10.
    Dirlewanger M, Schneiter PH, Paquot N, Jequier E, Rey V, Tappy L. Effects of glucocorticoids on hepatic sensitivity to insulin and glucagon in man. Clin Nutr. 2000;19:29–34.  https://doi.org/10.1054/clnu.1999.0064.CrossRefPubMedGoogle Scholar
  11. 11.
    Ruzzin J, Wagman AS, Jensen J. Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor. Diabetologia. 2005;48:2119–30.  https://doi.org/10.1007/s00125-005-1886-0.CrossRefPubMedGoogle Scholar
  12. 12.
    Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, Nowotny P, Roth E, Waldhäusl W, Roden M. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes. 2002;51:599–605.CrossRefPubMedGoogle Scholar
  13. 13.
    Perseghin G, Petersen K, Shulman GI. Cellular mechanism of insulin resistance: potential links with inflammation. Int J Obes Relat Metab Disord. 2003;27(Suppl 3):6–11.  https://doi.org/10.1038/sj.ijo.0802491.CrossRefGoogle Scholar
  14. 14.
    Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11:11–8.  https://doi.org/10.1111/j.1467-789X.2009.00623.x.CrossRefPubMedGoogle Scholar
  15. 15.
    Fasshauer M, Paschke R. Regulation of adipocytokines and insulin resistance. Diabetologia. 2003;46:1594–603.  https://doi.org/10.1007/s00125-003-1228-z.CrossRefPubMedGoogle Scholar
  16. 16.
    Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11:85–97.  https://doi.org/10.1038/nri2921.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Penfornis A, Kury-Paulin S. Immunosuppressive drug-induced diabetes. Diabetes Metab. 2006;32:539–46.  https://doi.org/10.1016/s1262-3636(06)72809-9.CrossRefPubMedGoogle Scholar
  18. 18.
    Ranta F, Avram D, Berchtold S, Düfer M, Drews G, Lang F, Ullrich S. Dexamethasone induces cell death in insulin-secreting cells, an effect reversed by exendin-4. Diabetes. 2006;55:1380–90.CrossRefPubMedGoogle Scholar
  19. 19.
    Mancini T, Kola B, Mantero F, Boscaro M, Arnaldi G. High cardiovascular risk in patients with Cushing’s syndrome according to 1999 WHO/ISH guidelines. Clin Endocrinol. 2004;61:768–77.  https://doi.org/10.1111/j.1365-2265.2004.02168.x.CrossRefGoogle Scholar
  20. 20.
    Friedman TC, Mastorakos G, Newman TD, Mullen NM, Horton EG, Costello R, Papadopoulos NM, Chrousos GP. Carbohydrate and lipid metabolism in endogenous hypercortisolism: shared features with metabolic syndrome X and NIDDM. Endocr J. 1996;43:645–55.CrossRefPubMedGoogle Scholar
  21. 21.
    Terzolo M, Pia A, Alì A, Osella G, Reimondo G, Bovio S, Daffara F, Procopio M, Paccotti P, Borretta G, Angeli A. Adrenal incidentaloma: a new cause of the metabolic syndrome? J Clin Endocrinol Metab. 2002;87:998–1003.  https://doi.org/10.1210/jcem.87.3.8277.CrossRefPubMedGoogle Scholar
  22. 22.
    Magee MH, Blum RA, Lates CD, Jusko WJ. Prednisolone pharmacokinetics and pharmacodynamics in relation to sex and race. J Clin Pharmacol. 2001;41:1180–94.  https://doi.org/10.1177/00912700122012733.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Burt MG, Roberts GW, Aguilar-Loza NR, Frith P, Stranks SN. Continuous monitoring of circadian glycemic patterns in patients receiving prednisolone for COPD. J Clin Endocrinol Metab. 2011;96:1789–96.  https://doi.org/10.1210/jc.2010-2729.CrossRefPubMedGoogle Scholar
  24. 24.
    van Raalte DH, van Genugten RE, Linssen MM, Ouwens DM, Diamant M. Glucagon-like peptide-1 receptor agonist treatment prevents glucocorticoid-induced glucose intolerance and islet-cell dysfunction in humans. Diabetes Care. 2011;34:412–7.  https://doi.org/10.2337/dc10-1677.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Scientific and Technical Publishers 2018

Authors and Affiliations

  1. 1.Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University, Affiliated Sixth People’s HospitalShanghaiChina

Personalised recommendations