Continuous Glucose Monitoring pp 129-141 | Cite as
Using Continuous Glucose Monitoring for Patients with Fasting Hyperglycemia
Abstract
Fasting hyperglycemia is one of the challenges in the management of diabetes mellitus, especially in patients with type 1 diabetes. The dawn phenomenon and Somogyi effect are two important causes of fasting hyperglycemia. This chapter focuses on clinical application of continuous glucose monitoring (CGM) in the detection and control of the dawn phenomenon and Somogyi effect. This chapter will first briefly introduce the concepts of the dawn phenomenon and Somogyi effect and their pathogenesis and then will focus on the classification and analysis of the dawn phenomenon and Somogyi effect with clinical utilization of CGM in recent years, including how to apply CGM for better determination and identification of the dawn phenomenon and Somogyi effect as well as how to use CGM to guide individualized treatment for the dawn phenomenon and Somogyi effect. At the end of this chapter, the potentially important roles of CGM in research into the pathophysiological mechanism of fasting hyperglycemia and individualized treatment will be described.
Keywords
Continuous glucose monitoring Dawn phenomenon Somogyi effect Fasting hyperglycemiaReferences
- 1.Schmidt MI, Hadji-Georgopoulos A, Rendell M, Margolis S, Kowarski A. The dawn phenomenon, an early morning glucose rise: implications for diabetic intraday blood glucose variation. Diabetes Care. 1981;4:579–85.CrossRefPubMedGoogle Scholar
- 2.Bolli GB, Gerich JE. The “dawn phenomenon”--a common occurrence in both non-insulin-dependent and insulin-dependent diabetes mellitus. N Engl J Med. 1984;310:746–50. https://doi.org/10.1056/NEJM198403223101203.CrossRefPubMedGoogle Scholar
- 3.Monnier L, Colette C, Sardinoux M, Baptista G, Regnier-Zerbib A, Owens D. Frequency and severity of the dawn phenomenon in type 2 diabetes: relationship to age. Diabetes Care. 2012;35:2597–9. https://doi.org/10.2337/dc12-0385.CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Rybicka M, Krysiak R, Okopień B. The dawn phenomenon and the Somogyi effect - two phenomena of morning hyperglycaemia. Endokrynol Pol. 2011;62:276–84.PubMedGoogle Scholar
- 5.Monnier L, Colette C, Dejager S, Owens D. Magnitude of the dawn phenomenon and its impact on the overall glucose exposure in type 2 diabetes: is this of concern? Diabetes Care. 2013;36:4057–62. https://doi.org/10.2337/dc12-2127.CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Somogyi M. Exacerbation of diabetes by excess insulin action. Am J Med. 1959;26:169–91.CrossRefPubMedGoogle Scholar
- 7.Perriello G, De Feo P, Torlone E, Calcinaro F, Ventura MM, Basta G, Santeusanio F, Brunetti P, Gerich JE, Bolli GB. The effect of asymptomatic nocturnal hypoglycemia on glycemic control in diabetes mellitus. N Engl J Med. 1988;319:1233–9. https://doi.org/10.1056/NEJM198811103191901.CrossRefPubMedGoogle Scholar
- 8.Bolli GB, Gottesman IS, Campbell PJ, Haymond MW, Cryer PE, Gerich JE. Glucose counterregulation and waning of insulin in the Somogyi phenomenon (posthypoglycemic hyperglycemia). N Engl J Med. 1984;311:1214–9. https://doi.org/10.1056/NEJM198411083111904.CrossRefPubMedGoogle Scholar
- 9.Matyka KA, Crowne EC, Havel PJ, Macdonald IA, Matthews D, Dunger DB. Counterregulation during spontaneous nocturnal hypoglycemia in prepubertal children with type 1 diabetes. Diabetes Care. 1999;22:1144–50.CrossRefPubMedGoogle Scholar
- 10.Tordjman KM, Havlin CE, Levandoski LA, White NH, Santiago JV, Cryer PE. Failure of nocturnal hypoglycemia to cause fasting hyperglycemia in patients with insulin-dependent diabetes mellitus. N Engl J Med. 1987;317:1552–9. https://doi.org/10.1056/NEJM198712173172502.CrossRefPubMedGoogle Scholar
- 11.Havlin CE, Cryer PE. Nocturnal hypoglycemia does not commonly result in major morning hyperglycemia in patients with diabetes mellitus. Diabetes Care. 1987;10:141–7.CrossRefPubMedGoogle Scholar
- 12.Mozersky RP, Bahl VK, Patel H, Patel N, Palushock S, Yamakawa H, Mook W, Basuray R, Velez-Giraldo JR. Fasting hyperglycemia in type I diabetes mellitus. J Am Osteopath Assoc. 1993;93:769–74.PubMedGoogle Scholar
- 13.Cohen M, Zimmet PZ. Home blood-glucose monitoring: a new approach to the management of diabetes mellitus. Med J Aust. 1980;2:713–6.PubMedGoogle Scholar
- 14.Kapellen TM, Heidtmann B, Bachmann J, Ziegler R, Grabert M, Holl RW. Indications for insulin pump therapy in different age groups: an analysis of 1,567 children and adolescents. Diabet Med. 2007;24:836–42. https://doi.org/10.1111/j.1464-5491.2007.02224.x.CrossRefPubMedGoogle Scholar
- 15.Carroll MF, Hardy KJ, Burge MR, Schade DS. Frequency of the dawn phenomenon in type 2 diabetes: implications for diabetes therapy. Diabetes Technol Ther. 2002;4:595–605. https://doi.org/10.1089/152091502320798213.CrossRefPubMedGoogle Scholar
- 16.Ando H, Ushijima K, Shimba S, Fujimura A. Daily fasting blood glucose rhythm male mice: a role of the circadian clock in the liver. Endocrinology. 2016;157:463–9. https://doi.org/10.1210/en.2015-1376.CrossRefPubMedGoogle Scholar
- 17.Campbell PJ, Bolli GB, Cryer PE, Gerich JE. Pathogenesis of the dawn phenomenon in patients with insulin-dependent diabetes mellitus. Accelerated glucose production and impaired glucose utilization due to nocturnal surges in growth hormone secretion. N Engl J Med. 1985;312:1473–9. https://doi.org/10.1056/NEJM198506063122302.CrossRefPubMedGoogle Scholar
- 18.Shih KC, Hsieh SH, Kwok CF, Hwu CM, Hsieh PS, Ho LT. Effect of growth hormone on dawn phenomenon in patients with type 2 diabetes. Growth Factors. 2013;31:66–73. https://doi.org/10.3109/08977194.2013.772996.CrossRefPubMedGoogle Scholar
- 19.Møller N, Jørgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev. 2009;30:152–77. https://doi.org/10.1210/er.2008-0027.CrossRefPubMedGoogle Scholar
- 20.Yagasaki H, Kobayashi K, Saitou T, Nagamine K, Mitsui Y, Mochizuki M, Kobayashi K, Cho H, Ohyama K, Amemiya S, Nakazawa S. Nocturnal blood glucose and IGFBP-1 changes in type 1 diabetes: Differences in the dawn phenomenon between insulin regimens. Exp Clin Endocrinol Diabetes. 2010;118:195–9. https://doi.org/10.1055/s-0029-1239518.CrossRefPubMedGoogle Scholar
- 21.Monnier L, Colette C, Rabasa-Lhoret R, Lapinski H, Caubel C, Avignon A, Boniface H. Morning hyperglycemic excursions: a constant failure in the metabolic control of non-insulin-using patients with type 2 diabetes. Diabetes Care. 2002;25:737–41.CrossRefPubMedGoogle Scholar
- 22.Boden G, Chen X, Urbain JL. Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production. Diabetes. 1996;45:1044–50.CrossRefPubMedGoogle Scholar
- 23.Radziuk J, Pye S. Diurnal rhythm in endogenous glucose production is a major contributor to fasting hyperglycaemia in type 2 diabetes. Suprachiasmatic deficit or limit cycle behaviour? Diabetologia. 2006;49:1619–28. https://doi.org/10.1007/s00125-006-0273-9.CrossRefPubMedGoogle Scholar
- 24.Chen W, Hoo RL, Konishi M, Itoh N, Lee PC, Ye HY, Lam KS, Xu A. Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes. J Biol Chem. 2011;286:34559–66. https://doi.org/10.1074/jbc.M111.285965.CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Yu H, Xia F, Lam KS, Wang Y, Bao Y, Zhang J, Gu Y, Zhou P, Lu J, Jia W, Xu A. Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans. Clin Chem. 2011;57:691–700. https://doi.org/10.1373/clinchem.2010.155184.CrossRefPubMedGoogle Scholar
- 26.Cryer PE. Hierarchy of physiological responses to hypoglycemia: relevance to clinical hypoglycemia in type I (insulin dependent) diabetes mellitus. Horm Metab Res. 1997;29:92–6. https://doi.org/10.1055/s-2007-978997.CrossRefPubMedGoogle Scholar
- 27.Perriello G, De Feo P, Torlone E, Fanelli C, Santeusanio F, Brunetti P, Bolli GB. The dawn phenomenon in type 1 (insulin-dependent) diabetes mellitus: magnitude, frequency, variability, and dependency on glucose counterregulation and insulin sensitivity. Diabetologia. 1991;34:21–8.CrossRefPubMedGoogle Scholar
- 28.Schaepelynck-Bélicar P, Vague P, Simonin G, Lassmann-Vague V. Improved metabolic control in diabetic adolescents using the continuous glucose monitoring system (CGMS). Diabetes Metab. 2003;29:608–12.CrossRefPubMedGoogle Scholar
- 29.Guillod L, Comte-Perret S, Monbaron D, Gaillard RC, Ruiz J. Nocturnal hypoglycaemias in type 1 diabetic patients: what can we learn with continuous glucose monitoring? Diabete Metab. 2007;33:360. https://doi.org/10.1016/j.diabet.2007.03.007.CrossRefPubMedGoogle Scholar
- 30.Høi-Hansen T, Pedersen-Bjergaard U, Thorsteinsson B. The Somogyi phenomenon revisited using continuous glucose monitoring in daily life. Diabetologia. 2005;48:2437–8. https://doi.org/10.1007/s00125-005-1946-5.CrossRefPubMedGoogle Scholar
- 31.Choudhary P, Davies C, Emery CJ, Heller SR. Do high fasting glucose levels suggest nocturnal hypoglycaemia? The Somogyi effect-more fiction than fact? Diabet Med. 2013;30:914–7. https://doi.org/10.1111/dme.12175.CrossRefPubMedGoogle Scholar
- 32.Colette C, Ginet C, Boegner C, Benichou M, Pham TC, Cristol JP, Monnier L. Dichotomous responses of inter and postprandial hyperglycaemia to short-term calorie restriction in patients with type 2 diabetes. Eur J Clin Investig. 2005;35:259–64. https://doi.org/10.1111/j.1365-2362.2005.01482.x.CrossRefGoogle Scholar
- 33.Zhou J, Jia W, Bao Y, Ma X, Lu W, Li H, Hu C, Xiang K. Glycemic variability and its responses to intensive insulin treatment in newly diagnosed type 2 diabetes. Med Sci Monit. 2008;14:CR552–8. https://doi.org/10.3760/j:issn:0376-2491.2006.14.009.CrossRefPubMedGoogle Scholar
- 34.Zhou J, Jia WP, Yu M, Ma XJ, Bao YQ, Lu W. The features of postprandialglucose state in type 2 diabetes mellitus. Zhonghua Yi Xue Za Zhi. 2006;86:970–5.PubMedGoogle Scholar
- 35.Atiea JA, Luzio S, Owens DR. The dawn phenomenon and diabetes control in treated NIDDM and IDDM patients. Diabetes Res Clin Pract. 1992;16:183–90.CrossRefPubMedGoogle Scholar
- 36.Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ, A1c-Derived Average Glucose Study Group. Translating the A1C assay into estimated average glucose values. Diabetes Care. 2008;31:1473–8. https://doi.org/10.2337/dc08-0545.CrossRefPubMedPubMedCentralGoogle Scholar
- 37.Monnier L, Colette C, Dunseath GJ, Owens DR. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care. 2007;30:263–9. https://doi.org/10.2337/dc06-1612.CrossRefPubMedGoogle Scholar
- 38.Matyka K, Ford-Adams M, Dunger DB. Hypoglycaemia and counterregulation during childhood. Horm Res. 2002;57(Suppl 1):85–90.PubMedGoogle Scholar
- 39.Tone A, Iseda I, Higuchi C, Tsukamoto K, Katayama A, Matsushita Y, Hida K, Wada J, Shikata K. Comparison of insulin detemir and insulin glargine on glycemic variability in patients with type 1 and type 2 diabetes. Exp Clin Endocrinol Diabetes. 2010;118:320–4. https://doi.org/10.1055/s-0029-1243230.CrossRefPubMedGoogle Scholar
- 40.Sheehan JP. Fasting hyperglycemia: etiology, diagnosis, and treatment. Diabetes Technol Ther. 2004;6:525–33. https://doi.org/10.1089/1520915041705910.CrossRefPubMedGoogle Scholar
- 41.Hanew K, Sugawara A, Shimizu Y, Sato S, Sasaki A, Tazawa S, Ishii K, Saitoh T, Saso S, Yoshinaga K. The combination therapy with bromocriptine and cyproheptadine in patients with acromegaly. Endocrinol Jpn. 1989;36:429–38.CrossRefPubMedGoogle Scholar
- 42.Porcellati F, Lucidi P, Bolli GB, Fanelli CG. Thirty years of research on the dawn phenomenon: lessons to optimize blood glucose control in diabetes. Diabetes Care. 2013;36:3860–2. https://doi.org/10.2337/dc13-2088.CrossRefPubMedPubMedCentralGoogle Scholar
- 43.ORIGIN Trial Investigators, Gerstein HC, Bosch J, Dagenais GR, Díaz R, Jung H, Maggioni AP, Pogue J, Probstfield J, Ramachandran A, Riddle MC, Rydén LE, Yusuf S. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367:319–28. https://doi.org/10.1056/NEJMoa1203858.CrossRefGoogle Scholar
- 44.Pistrosch F, Köhler C, Schaper F, Landgraf W, Forst T, Hanefeld M. Effects of insulin glargine versus metformin on glycemic variability, microvascular and beta-cell function in early type 2 diabetes. Acta Diabetol. 2013;50:587–95. https://doi.org/10.1007/s00592-012-0451-9.CrossRefPubMedPubMedCentralGoogle Scholar
- 45.King AB. Once-daily insulin detemir is comparable to once-daily insulin glargine in providing glycaemic control over 24 h in patients with type 2 diabetes: a double-blind, randomized, crossover study. Diabetes Obes Metab. 2009;11:69–71. https://doi.org/10.1111/j.1463-1326.2008.01014.x.CrossRefPubMedGoogle Scholar
- 46.King AB. No higher dose requirements with insulin detemir than glargine in type 2 diabetes: a crossover, double-blind, and randomized study using continuous glucose monitoring. J Diabetes Sci Technol. 2010;4:151–4. https://doi.org/10.1177/193229681000400119.CrossRefPubMedPubMedCentralGoogle Scholar
- 47.Heise T, Nosek L, Rønn BB, Endahl L, Heinemann L, Kapitza C, Draeger E. Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes. 2004;53:1614–20.CrossRefPubMedGoogle Scholar
- 48.Swinnen SG, Simon AC, Holleman F, Hoekstra JB, Devries JH. Insulin detemir versus insulin glargine for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2011:CD006383. https://doi.org/10.1002/14651858.CD006383.pub2.
- 49.Hollander P, King AB, Del Prato S, Sreenan S, Balci MK, Muñoz-Torres M, Rosenstock J, Hansen CT, Niemeyer M, Garber AJ. Insulin degludec improves long-term glycaemic control similarly to insulin glargine but with fewer hypoglycaemic episodes in patients with advanced type 2 diabetes on basal-bolus insulin therapy. Diabetes Obes Metab. 2015;17:202–6. https://doi.org/10.1111/dom.12411.CrossRefPubMedGoogle Scholar
- 50.Simioni N, Filippi A, Scardapane M, Nicolucci A, Rossi MC, Frison V. Efficacy and safety of insulin degludec for hyperglycemia management in noncritical hospitalized patients with diabetes: an observational study. Diabetes Ther. 2017;8:941–6. https://doi.org/10.1007/s13300-017-0271-6.CrossRefPubMedPubMedCentralGoogle Scholar
- 51.Shields A, Sankaranarayanan S. Basal insulin regime change from Lantus to Toujeo resulted in fewer hypoglycaemic episodes in a 28-year-old man with diabetes mellitus. BMJ Case Rep. 2016;2016:bcr2016215831. https://doi.org/10.1136/bcr-2016-215831.CrossRefPubMedPubMedCentralGoogle Scholar
- 52.Papargyri P, Ojeda Rodríguez S, Corrales Hernández JJ, Mories Álvarez MT, Recio Córdova JM, Delgado Gómez M, Sánchez Marcos AI, Iglesias López RA, Herrero Ruiz A, Beaulieu Oriol M, Miralles García JM. An observational 7-year study of continuous subcutaneous insulin infusion for the treatment of type 1 diabetes mellitus. Endocrinol Nutr. 2014;61:141–6. https://doi.org/10.1016/j.endonu.2013.09.003.CrossRefPubMedGoogle Scholar
- 53.Bouchonville MF, Jaghab JJ, Duran-Valdez E, Schrader RM, Schade DS. The effectiveness and risks of programming an insulin pump to counteract the dawn phenomenon in type 1 diabetes. Endocr Pract. 2014;20:1290–6. https://doi.org/10.4158/EP144198.OR.CrossRefGoogle Scholar
- 54.Garg SK, Weinzimer SA, Tamborlane WV, Buckingham BA, Bode BW, Bailey TS, Brazg RL, Ilany J, Slover RH, Anderson SM, Bergenstal RM, Grosman B, Roy A, Cordero TL, Shin J, Lee SW, Kaufman FR. Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol Ther. 2017;19:155–63. https://doi.org/10.1089/dia.2016.0421.CrossRefPubMedPubMedCentralGoogle Scholar