Optimal Allocation of Compensators

  • Mohamed Ebeed
  • Salah Kamel
  • Shady H. E. Abdel Aleem
  • Almoataz Y. Abdelaziz
Chapter
Part of the Power Systems book series (POWSYS)

Abstract

Electric distribution networks mainly deliver the electric power from the high-voltage transmission system to the consumers. In these networks, the R/X ratio is significantly high compared to transmission systems hence power loss is high (about 10–13% of the generated power). Moreover, poor quality of power including the voltage profile and voltage stability issues may arise. The inclusion of shunt capacitors and distributed Flexible ac transmission system (D-FACTS) devices can significantly enhance the performance of distribution networks by providing the required reactive power. D-FACTS include different members such as; distributed static compensator (DSTATCOM), Distribution Static Var Compensator (D-SVC) and unified power quality conditioner (UPQC). Optimal allocation of these controllers in the distribution networks is an important task for researchers for power loss minimizing, voltage profile improvement, voltage stability enhancement, reducing the overall system costs and maximizing the system load ability and reliability. Several analytical and optimization methods have been presented to find the optimal siting and sizing of capacitors and shunt compensators in electric distribution networks. This chapter presents a survey of new optimization techniques which are used to find the optimal sizes and locations of such devices. This chapter also presents an application of new optimization technique called Grasshopper Optimization Algorithm (GOA) to determine the optimal locations and sizes of capacitor banks and DSTATCOMs. The obtained results are compared with different algorithms such as; Grey Wolf Optimizer (GWO), Sine Cosine Algorithm (SCA).

Keywords

D-FACTS UPQC Capacitor DSTATCOM Optimization 

References

  1. 1.
    S.A. Taher, S.A. Afsari, Optimal location and sizing of DSTATCOM in distribution systems by immune algorithm. Int. J. Electr. Power Energy Syst. 60, 34–44 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Ganguly, Impact of unified power-quality conditioner allocation on line loading, losses, and voltage stability of radial distribution systems. IEEE Trans. Power Delivery 29, 1859–1867 (2014)CrossRefGoogle Scholar
  3. 3.
    S. Devi, M. Geethanjali, Optimal location and sizing of distribution static synchronous series compensator using particle swarm optimization. Int. J. Electr. Power Energy Syst. 62, 646–653 (2014)CrossRefGoogle Scholar
  4. 4.
    H. Ng, M. Salama, A. Chikhani, Classification of capacitor allocation techniques. IEEE Trans. Power Delivery 15, 387–392 (2000)CrossRefGoogle Scholar
  5. 5.
    J. Schmill, Optimum size and location of shunt capacitors on distribution feeders. IEEE Trans. Power Appar. Syst. 84, 825–832 (1965)CrossRefGoogle Scholar
  6. 6.
    N. Neagle, D. Samson, Loss reduction from capacitors installed on primary feeders. Trans. Am. Inst. Electr. Eng. Part III: Power Appar. Syst. 75, 950–959 (1956)Google Scholar
  7. 7.
    Y. Bae, Analytical method of capacitor allocation on distribution primary feeders. IEEE Trans. Power Appar. Syst. 1232–1238 (1978)CrossRefGoogle Scholar
  8. 8.
    T.H. Fawzi, S.M. El-Sobki, M.A. Abdel-halim, New approach for the application of shunt capacitors to the primary distribution feeders. IEEE Trans. Power Appar. Syst. 10–13 (1983)Google Scholar
  9. 9.
    H. Dura, Optimum number, location, and size of shunt capacitors in radial distribution feeders a dynamic programming approach. IEEE Trans. Power Appar. Syst. 1769–1774 (1968)CrossRefGoogle Scholar
  10. 10.
    M. Baran, F.F. Wu, Optimal sizing of capacitors placed on a radial distribution system. IEEE Trans. Power Delivery 4, 735–743 (1989)CrossRefGoogle Scholar
  11. 11.
    M. Ponnavsikko, K.P. Rao, Optimal choice of fixed and switched shunt capacitors on radial distributors by the method of local variations. IEEE Trans. Power Appar. Syst. 1607–1615 (1983)CrossRefGoogle Scholar
  12. 12.
    S. Lee, J. Grainger, Optimum placement of fixed and switched capacitors on primary distribution feeders. IEEE Trans. Power Appar. Syst. 345–352 (1981)CrossRefGoogle Scholar
  13. 13.
    K. Padiyar, FACTS Controllers in Power Transmission and Distribution (New Age International, 2007)Google Scholar
  14. 14.
    N.G. Hingorani, L. Gyugyi, Understanding Facts (IEEE press, 2000)CrossRefGoogle Scholar
  15. 15.
    S. Kamel, F. Jurado, D. Vera, A simple implementation of power mismatch STATCOM model into current injection Newton-Raphson power-flow method. Electr. Eng. 96, 135–144 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Kamel, F. Jurado, Z. Chen, M. Abdel-Akher, M. Ebeed, Developed generalised unified power flow controller model in the Newton-Raphson power-flow analysis using combined mismatches method. IET Gener. Transm. Distrib. 10, 2177–2184 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Abd el-sattar, S. Kamel, M. Ebeed, Enhancing security of power systems including SSSC using moth-flame optimization algorithm, in Power Systems Conference (MEPCON), 2016 Eighteenth International Middle East (2016), pp. 797–802Google Scholar
  18. 18.
    M. Ebeed, S. Kamel, F. Jurado, Determination of IPFC operating constraints in power flow analysis. Int. J. Electr. Power Energy Syst. 81, 299–307 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Chakravorty, D. Das, Voltage stability analysis of radial distribution networks. Int. J. Electr. Power Energy Syst. 23, 129–135 (2001)CrossRefGoogle Scholar
  20. 20.
    A. Elnady, M.M. Salama, Unified approach for mitigating voltage sag and voltage flicker using the DSTATCOM. IEEE Trans. Power Delivery 20, 992–1000 (2005)CrossRefGoogle Scholar
  21. 21.
    Z. Shuai, A. Luo, Z.J. Shen, W. Zhu, Z. Lv, C. Wu, A dynamic hybrid var compensator and a two-level collaborative optimization compensation method. IEEE Trans. Power Electron. 24, 2091–2100 (2009)CrossRefGoogle Scholar
  22. 22.
    R. Majumder, Reactive power compensation in single-phase operation of microgrid. IEEE Trans. Industr. Electron. 60, 1403–1416 (2013)CrossRefGoogle Scholar
  23. 23.
    R. Yan, B. Marais, T.K. Saha, Impacts of residential photovoltaic power fluctuation on on-load tap changer operation and a solution using DSTATCOM. Electr. Power Syst. Res. 111, 185–193 (2014)CrossRefGoogle Scholar
  24. 24.
    O.P. Mahela, A.G. Shaik, A review of distribution static compensator. Renew. Sustain. Energy Rev. 50, 531–546 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Hosseini, H.A. Shayanfar, Modeling of series and shunt distribution FACTS devices in distribution systems load flow. J. Electr. Syst. 4, 1–12 (2008)Google Scholar
  26. 26.
    A. Ghosh, G. Ledwich, Power Quality Enhancement Using Custom Power Devices (Springer Science & Business Media, 2012)Google Scholar
  27. 27.
    M.-C. Wong, C.-J. Zhan, Y.-D. Han, L.-B. Zhao, A unified approach for distribution system conditioning: distribution system unified conditioner (DS-UniCon), in Power Engineering Society Winter Meeting, 2000. IEEE (2000), pp. 2757–2762Google Scholar
  28. 28.
    V. Khadkikar, Enhancing electric power quality using UPQC: a comprehensive overview. IEEE Trans. Power Electron. 27, 2284–2297 (2012)CrossRefGoogle Scholar
  29. 29.
    M. Hosseini, H. Shayanfar, M. Fotuhi-Firuzabad, Modeling of unified power quality conditioner (UPQC) in distribution systems load flow. Energy Convers. Manag. 50, 1578–1585 (2009)CrossRefGoogle Scholar
  30. 30.
    C.-F. Chang, Reconfiguration and capacitor placement for loss reduction of distribution systems by ant colony search algorithm. IEEE Trans. Power Syst. 23, 1747–1755 (2008)CrossRefGoogle Scholar
  31. 31.
    K. Devabalaji, K. Ravi, D. Kothari, Optimal location and sizing of capacitor placement in radial distribution system using bacterial foraging optimization algorithm. Int. J. Electr. Power Energy Syst. 71, 383–390 (2015)CrossRefGoogle Scholar
  32. 32.
    A.A. Eajal, M. El-Hawary, Optimal capacitor placement and sizing in unbalanced distribution systems with harmonics consideration using particle swarm optimization. IEEE Trans. Power Delivery 25, 1734–1741 (2010)CrossRefGoogle Scholar
  33. 33.
    A.A. El-Fergany, A.Y. Abdelaziz, Cuckoo search-based algorithm for optimal shunt capacitors allocations in distribution networks. Electric Power Components and Systems 41, 1567–1581 (2013)CrossRefGoogle Scholar
  34. 34.
    A.A. El-Fergany, Involvement of cost savings and voltage stability indices in optimal capacitor allocation in radial distribution networks using artificial bee colony algorithm. Int. J. Electr. Power Energy Syst. 62, 608–616 (2014)CrossRefGoogle Scholar
  35. 35.
    A.A.A. El-Ela, R.A. El-Sehiemy, A.-M. Kinawy, M.T. Mouwafi, Optimal capacitor placement in distribution systems for power loss reduction and voltage profile improvement. IET Gener. Transm. Distrib. 10, 1209–1221 (2016)CrossRefGoogle Scholar
  36. 36.
    A. Askarzadeh, Capacitor placement in distribution systems for power loss reduction and voltage improvement: a new methodology. IET Gener. Transm. Distrib. 10, 3631–3638 (2016)CrossRefGoogle Scholar
  37. 37.
    A. Abdelaziz, E. Ali, S.A. Elazim, Flower pollination algorithm and loss sensitivity factors for optimal sizing and placement of capacitors in radial distribution systems. Int. J. Electr. Power Energy Syst. 78, 207–214 (2016)CrossRefGoogle Scholar
  38. 38.
    S.K. Injeti, V.K. Thunuguntla, M. Shareef, Optimal allocation of capacitor banks in radial distribution systems for minimization of real power loss and maximization of network savings using bio-inspired optimization algorithms. Int. J. Electr. Power Energy Syst. 69, 441–455 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Sultana, P.K. Roy, Oppositional krill herd algorithm for optimal location of capacitor with reconfiguration in radial distribution system. Int. J. Electr. Power Energy Syst. 74, 78–90 (2016)CrossRefGoogle Scholar
  40. 40.
    F.G. Duque, L.W. de Oliveira, E.J. de Oliveira, An approach for optimal allocation of fixed and switched capacitor banks in distribution systems based on the monkey search optimization method. J. Control Autom. Electr. Syst. 27, 212–227 (2016)CrossRefGoogle Scholar
  41. 41.
    A. Zeinalzadeh, Y. Mohammadi, M.H. Moradi, Optimal multi objective placement and sizing of multiple DGs and shunt capacitor banks simultaneously considering load uncertainty via MOPSO approach. Int. J. Electr. Power Energy Syst. 67, 336–349 (2015)CrossRefGoogle Scholar
  42. 42.
    A.K. Fard, T. Niknam, Optimal stochastic capacitor placement problem from the reliability and cost views using firefly algorithm. IET Sci. Meas. Technol. 8, 260–269 (2014)CrossRefGoogle Scholar
  43. 43.
    A. Elsheikh, Y. Helmy, Y. Abouelseoud, A. Elsherif, Optimal capacitor placement and sizing in radial electric power systems. Alex. Eng. J. 53, 809–816 (2014)CrossRefGoogle Scholar
  44. 44.
    H. Karami, B. Zaker, B. Vahidi, G.B. Gharehpetian, Optimal multi-objective number, locating, and sizing of distributed generations and distributed static compensators considering loadability using the genetic algorithm. Electr. Power Compon. Syst. 44, 2161–2171 (2016)CrossRefGoogle Scholar
  45. 45.
    H. Bagheri Tolabi, A. Lashkar Ara, and R. Hosseini, A fuzzy-ExIWO method for optimal placement of multiple DSTATCOM/DG and tuning the DSTATCM’s controller, COMPEL: Int. J. Comput. Math. Electr. Electron. Eng. 35, 1014–1033 (2016)CrossRefGoogle Scholar
  46. 46.
    S. Devi, M. Geethanjali, Placement and sizing of D-STATCOM using particle swarm optimization, in Power Electronics and Renewable Energy Systems (Springer, 2015), pp. 941–951Google Scholar
  47. 47.
    H.B. Tolabi, M.H. Ali, M. Rizwan, Simultaneous reconfiguration, optimal placement of DSTATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach. IEEE Trans. Sustain. Energy 6, 210–218 (2015)CrossRefGoogle Scholar
  48. 48.
    K. Devabalaji, K. Ravi, Optimal size and siting of multiple DG and DSTATCOM in radial distribution system using bacterial foraging optimization algorithm. Ain Shams Eng. J. 7, 959–971 (2016)CrossRefGoogle Scholar
  49. 49.
    T. Yuvaraj, K. Ravi, K. Devabalaji, DSTATCOM allocation in distribution networks considering load variations using bat algorithm. Ain Shams Eng. J. (2015)Google Scholar
  50. 50.
    J. Sarker, S. Goswami, Optimal location of unified power quality conditioner in distribution system for power quality improvement. Int. J. Electr. Power Energy Syst. 83, 309–324 (2016)CrossRefGoogle Scholar
  51. 51.
    S. Ganguly, Multi-objective planning for reactive power compensation of radial distribution networks with unified power quality conditioner allocation using particle swarm optimization. IEEE Trans. Power Syst. 29, 1801–1810 (2014)CrossRefGoogle Scholar
  52. 52.
    R.S. Rao, S. Narasimham, M. Ramalingaraju, Optimal capacitor placement in a radial distribution system using plant growth simulation algorithm. Int. J. Electr. Power Energy Syst. 33, 1133–1139 (2011)CrossRefGoogle Scholar
  53. 53.
    Y.-C. Huang, H.-T. Yang, C.-L. Huang, Solving the capacitor placement problem in a radial distribution system using tabu search approach. IEEE Trans. Power Syst. 11, 1868–1873 (1996)CrossRefGoogle Scholar
  54. 54.
    E. Ali, S.A. Elazim, A. Abdelaziz, Improved harmony algorithm and power loss index for optimal locations and sizing of capacitors in radial distribution systems. Int. J. Electr. Power Energy Syst. 80, 252–263 (2016)CrossRefGoogle Scholar
  55. 55.
    K. Muthukumar, S. Jayalalitha, Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique. Int. J. Electr. Power Energy Syst. 78, 299–319 (2016)CrossRefGoogle Scholar
  56. 56.
    V. Haldar, N. Chakraborty, Power loss minimization by optimal capacitor placement in radial distribution system using modified cultural algorithm. Int. Trans. Electr. Energy Syst. 25, 54–71 (2015)CrossRefGoogle Scholar
  57. 57.
    M.H. Moradi, A. Zeinalzadeh, Y. Mohammadi, M. Abedini, An efficient hybrid method for solving the optimal sitting and sizing problem of DG and shunt capacitor banks simultaneously based on imperialist competitive algorithm and genetic algorithm. Int. J. Electr. Power Energy Syst. 54, 101–111 (2014)CrossRefGoogle Scholar
  58. 58.
    S. Sultana, P.K. Roy, Optimal capacitor placement in radial distribution systems using teaching learning based optimization. Int. J. Electr. Power Energy Syst. 54, 387–398 (2014)CrossRefGoogle Scholar
  59. 59.
    V. Renu, S. Jeyadevi, Optimal design of UPQC devices in radial distribution network for voltage stability enhancement. Int. J. Appl. Eng. Res. 10 (2015)Google Scholar
  60. 60.
    Y.M. Shuaib, M.S. Kalavathi, C.C.A. Rajan, Optimal capacitor placement in radial distribution system using gravitational search algorithm. Int. J. Electr. Power Energy Syst. 64, 384–397 (2015)CrossRefGoogle Scholar
  61. 61.
    S. Sundhararajan, A. Pahwa, Optimal selection of capacitors for radial distribution systems using a genetic algorithm. IEEE Trans. Power Syst. 9, 1499–1507 (1994)CrossRefGoogle Scholar
  62. 62.
    H. Sadeghi, N. Ghaffarzadeh, A simultaneous biogeography based optimal placement of DG units and capacitor banks in distribution systems with nonlinear loads. J. Electr. Eng. 67, 351–357 (2016)Google Scholar
  63. 63.
    M. Sedighizadeh, D. Arzaghi-Haris, Optimal allocation and sizing of capacitors to minimize the distribution line loss and to improve the voltage profile using big bang-big crunch optimization. Int. Rev. Electr. Eng. 6 (2011)Google Scholar
  64. 64.
    H.-D. Chiang, J.-C. Wang, O. Cockings, H.-D. Shin, Optimal capacitor placements in distribution systems. II. Solution algorithms and numerical results. IEEE Trans. Power Delivery 5, 643–649 (1990)CrossRefGoogle Scholar
  65. 65.
    A.A. El-Fergany, Optimal capacitor allocations using evolutionary algorithms. IET Gener. Transm. Distrib. 7, 593–601 (2013)CrossRefGoogle Scholar
  66. 66.
    J. Vuletić, M. Todorovski, Optimal capacitor placement in distorted distribution networks with different load models using penalty free genetic algorithm. Int. J. Electr. Power Energy Syst. 78, 174–182 (2016)CrossRefGoogle Scholar
  67. 67.
    R. Hosseinzadehdehkordi, H. Shayeghi, M. Karimi, P. Farhadi, Optimal sizing and siting of shunt capacitor banks by a new improved differential evolutionary algorithm. Int. Trans. Electr. Energy Syst. 24, 1089–1102 (2014)CrossRefGoogle Scholar
  68. 68.
    A.R. Abul’Wafa, Optimal capacitor placement for enhancing voltage stability in distribution systems using analytical algorithm and Fuzzy-Real Coded GA. Int. J. Electr. Power Energy Syst. 55, 246–252 (2014)CrossRefGoogle Scholar
  69. 69.
    I. Szuvovivski, T. Fernandes, A. Aoki, Simultaneous allocation of capacitors and voltage regulators at distribution networks using genetic algorithms and optimal power flow. Int. J. Electr. Power Energy Syst. 40, 62–69 (2012)CrossRefGoogle Scholar
  70. 70.
    S. Jazebi, S. Hosseinian, B. Vahidi, DSTATCOM allocation in distribution networks considering reconfiguration using differential evolution algorithm. Energy Convers. Manag. 52, 2777–2783 (2011)CrossRefGoogle Scholar
  71. 71.
    J. Sanam, A. Panda, S. Ganguly, Optimal phase angle injection for reactive power compensation of distribution systems with the allocation of multiple distribution STATCOM. Arab. J. Sci. Eng. 1–9 (2016)Google Scholar
  72. 72.
    S. Saremi, S. Mirjalili, A. Lewis, Grasshopper optimisation algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017)CrossRefGoogle Scholar
  73. 73.
    B. Uvarov, Grasshoppers and locusts.in A Handbook of General Acridology Vol. 2. Behaviour, Ecology, Biogeography, Population Dynamics (Centre for Overseas Pest Research, 1977)Google Scholar
  74. 74.
    C.M. Topaz, A.J. Bernoff, S. Logan, W. Toolson, A model for rolling swarms of locusts. Eur. Phys. J.-Spec. Top. 157, 93–109 (2008)CrossRefGoogle Scholar
  75. 75.
    S. Chandramohan, N. Atturulu, R.K. Devi, B. Venkatesh, Operating cost minimization of a radial distribution system in a deregulated electricity market through reconfiguration using NSGA method. Int. J. Electr. Power Energy Syst. 32, 126–132 (2010)CrossRefGoogle Scholar
  76. 76.
    S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRefGoogle Scholar
  77. 77.
    S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)CrossRefGoogle Scholar
  78. 78.
    M.R. Raju, K.R. Murthy, K. Ravindra, Direct search algorithm for capacitive compensation in radial distribution systems. Int. J. Electr. Power Energy Syst. 42, 24–30 (2012)CrossRefGoogle Scholar
  79. 79.
    E. Ali, S.A. Elazim, A. Abdelaziz, Ant lion optimization algorithm for renewable distributed generations. Energy 116, 445–458 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mohamed Ebeed
    • 1
  • Salah Kamel
    • 1
  • Shady H. E. Abdel Aleem
    • 2
  • Almoataz Y. Abdelaziz
    • 3
  1. 1.Electrical Engineering Department, Aswan Faculty of EngineeringAswan UniversityAswanEgypt
  2. 2.Mathematical, Physical and Engineering Sciences Department15th of May Higher Institute of EngineeringCairoEgypt
  3. 3.Electric Power and Machines Department, Faculty of EngineeringAin Shams UniversityCairoEgypt

Personalised recommendations