Advertisement

Exosomes Potentiate NF-κB Signaling, Tumor Progression, and Metastasis in Hepatocellular Carcinoma

  • Kishore Kumar Jella
  • Zhentian Li
Chapter

Abstract

Worldwide, HCC is considered as one of the major cancer-related deaths. Tumor-derived exosomes play a potential role in HCC by mediating intracellular communication, immune responses, and antigen presentation. Exosomes communicate between the cells using proteins, mRNA, miRNA, lipids, and DNA present in their cargo. Increased understanding of exosomes and their role in cancer could lead to a powerful strategy for the treatment of HCC. In this chapter, we summarize the role of exosomes in cancer initiation, progression, and metastasis and in NF-κB through its miRNA. MiRNA derived from exosomes of HCC cells can enhance and modulate TAK1 and downstream signaling in recipient cells. Exosomes have a greater potential in the near future making it as prognostic biomarkers; they can serve in anticancer drug resistance and immunotherapy in the near future.

Keywords

HCC Exosomes miRNA Proteins NF-κB TNF-α TGF-β 

Abbreviations

ACS

American Cancer Society

CAFs

Cancer-associated fibroblasts

EGFR

Epidermal growth factor receptor

EMT

Epithelial mesenchymal transition

EPCAM

Epithelial cell adhesion molecule

ESCRT

Endosomal sorting complex required for transport

FAP

Fibroblast activation protein

Flt-3

FMS-like tyrosine kinase-3

GPC1

Glypican I

GTPase

Guanosine triphosphate

HCC

Hepatocellular carcinoma

HCV

Hepatocellular virus

HIF

Hypoxia-inducing factor

IL-1

Interleukin 1

LPS

Lipopolysaccharide

MAPK

Mitogen-activated protein kinase

MMPs

Matrix metalloproteinases

NF-κB

Nuclear factor kappa B

PDGF

Platelet-derived growth factor

PDGFR

Platelet-derived growth factor receptor

PDK1

Phosphoinositide-dependent kinase I

TAK

TGF-β-activated kinase

TGF

Tumor growth factor

TLR

Toll-like receptor

TNF

Tumor necrosis factor

VEGF

Vascular endothelial growth factor

Notes

Acknowledgment

I would like to acknowledge Dr. Nagaraju P. Ganji for giving me the opportunity to write this book chapter. I appreciate the guidance, support, and encouragement in writing this book chapter. A special thanks to Addie Byrd for helping in scientific corrections.

References

  1. 1.
    Society AC (2017) Cancer facts & figures. American Cancer Society, AtlantaGoogle Scholar
  2. 2.
    Kalluri R (2016) The biology and function of exosomes in cancer. J Clin Invest 126:1208PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kahlert C et al (2014) Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 289(7):3869–3875PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Patel GK, Patton MC, Singh S, Khushman M, Singh AP (2016) Pancreatic cancer exosomes: shedding off for a meaningful journey. Pancreat Disord Ther 6(2):e148PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Willms E et al (2016) Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 6:22519PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Livshits MA et al (2015) Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep 5:17319PubMedCrossRefGoogle Scholar
  8. 8.
    Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles 2:20389CrossRefGoogle Scholar
  9. 9.
    Raposo G et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172PubMedCrossRefGoogle Scholar
  10. 10.
    Pegtel DM et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107(14):6328–6333PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Eldh M et al (2010) Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One 5(12):e15353PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ohshima K et al (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5(10):e13247PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Pfeiffer JR, McAvoy BL, Fecteau RE, Deleault KM, Brooks SA (2011) CARHSP1 is required for effective tumor necrosis factor alpha mRNA stabilization and localizes to processing bodies and exosomes. Mol Cell Biol 31(2):277–286PubMedCrossRefGoogle Scholar
  14. 14.
    Lazaro-Ibanez E et al (2014) Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes. Prostate 74(14):1379–1390PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kalluri R, LeBleu VS (2017) Discovery of double-stranded genomic DNA in circulating exosomes. Cold Spring Harb Symp Quant Biol 81:275–280CrossRefGoogle Scholar
  16. 16.
    Dang VD, Jella KK, Ragheb RRT, Denslow ND, Alli AA (2017) Lipidomics and proteomic analysis of exosomes from mouse cortical collecting duct cells. FASEB J doi: 10.1096/fj.201700417R CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M (2017, July/August) RNA in extracellular vesicles. Wiley Interdiscip Rev RNA 8(4)CrossRefGoogle Scholar
  18. 18.
    Azmi AS, Bao B, Sarkar FH (2013) Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev 32(3–4):623–642PubMedCrossRefGoogle Scholar
  19. 19.
    Lasser C (2012) Exosomal RNA as biomarkers and the therapeutic potential of exosome vectors. Expert Opin Biol Ther 12(Suppl 1):S189–S197PubMedCrossRefGoogle Scholar
  20. 20.
    Vickers KC, Remaley AT (2012) Lipid-based carriers of microRNAs and intercellular communication. Curr Opin Lipidol 23(2):91–97PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gong J et al (2012) Microparticles and their emerging role in cancer multidrug resistance. Cancer Treat Rev 38(3):226–234PubMedCrossRefGoogle Scholar
  22. 22.
    Jaiswal R et al (2012) Microparticle conferred microRNA profiles--implications in the transfer and dominance of cancer traits. Mol Cancer 11:37PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sun L et al (2017) Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro. Sci Rep 7(1):2552PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gong M et al (2017) Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 8:45200–45212PubMedPubMedCentralGoogle Scholar
  25. 25.
    Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659PubMedCrossRefGoogle Scholar
  26. 26.
    Zomer A et al (2010) Exosomes: fit to deliver small RNA. Commun Integr Biol 3(5):447–450PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Brinton LT, Sloane HS, Kester M, Kelly KA (2015) Formation and role of exosomes in cancer. Cell Mol Life Sci 72(4):659–671PubMedCrossRefGoogle Scholar
  28. 28.
    Lee Y, El Andaloussi S, Wood MJ (2012) Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 21(R1):R125–R134PubMedCrossRefGoogle Scholar
  29. 29.
    Edgar JR (2016) Q&A: what are exosomes, exactly? BMC Biol 14:46PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Baietti MF et al (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14(7):677–685PubMedCrossRefGoogle Scholar
  31. 31.
    Roucourt B, Meeussen S, Bao J, Zimmermann P, David G (2015) Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res 25(4):412–428PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ostrowski M, et al. (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30; sup pp 11–13PubMedCrossRefGoogle Scholar
  33. 33.
    Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525PubMedCrossRefGoogle Scholar
  34. 34.
    Bobrie A, Colombo M, Raposo G, Thery C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12(12):1659–1668PubMedCrossRefGoogle Scholar
  35. 35.
    Iero M et al (2008) Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15(1):80–88PubMedCrossRefGoogle Scholar
  36. 36.
    Michelet X, Djeddi A, Legouis R (2010) Developmental and cellular functions of the ESCRT machinery in pluricellular organisms. Biol Cell 102(3):191–202PubMedCrossRefGoogle Scholar
  37. 37.
    Parolini I et al (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284(49):34211–34222PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ramachandran S, Palanisamy V (2012) Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdiscip Rev RNA 3(2):286–293PubMedCrossRefGoogle Scholar
  39. 39.
    Savina A, Furlan M, Vidal M, Colombo MI (2003) Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 278(22):20083–20090PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang X et al (2015) Exosomes in cancer: small particle, big player. J Hematol Oncol 8:83PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ge R, Tan E, Sharghi-Namini S, Asada HH (2012) Exosomes in cancer microenvironment and beyond: have we overlooked these extracellular messengers? Cancer Microenviron 5(3):323–332PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kahlert C, Kalluri R (2013) Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl) 91(4):431–437CrossRefGoogle Scholar
  44. 44.
    Gu J et al (2012) Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-beta/Smad pathway. PLoS One 7(12):e52465PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Park JE et al (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9(6):1085–1099PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Webber J, Steadman R, Mason MD, Tabi Z, Clayton A (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70(23):9621–9630PubMedCrossRefGoogle Scholar
  48. 48.
    Webber J et al (2014) Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (SOMAscan) platform. Mol Cell Proteomics 13(4):1050–1064PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Webber JP et al (2015) Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene 34(3):290–302PubMedCrossRefGoogle Scholar
  50. 50.
    You Y et al (2015) Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis. Cancer Sci 106(12):1669–1677PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Zhou W et al (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25:501PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Atula S, Grenman R, Syrjanen S (1997) Fibroblasts can modulate the phenotype of malignant epithelial cells in vitro. Exp Cell Res 235(1):180–187PubMedCrossRefGoogle Scholar
  53. 53.
    Luga V et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556PubMedCrossRefGoogle Scholar
  54. 54.
    Al-Nedawi K et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624PubMedCrossRefGoogle Scholar
  55. 55.
    Demory Beckler M et al (2013) Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol Cell Proteomics 12(2):343–355PubMedCrossRefGoogle Scholar
  56. 56.
    Aga M et al (2014) Exosomal HIF1alpha supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene 33(37):4613–4622PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Melo SA et al (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26(5):707–721PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890PubMedCrossRefGoogle Scholar
  59. 59.
    Syn N, Wang L, Sethi G, Thiery JP, Goh BC (2016) Exosome-mediated metastasis: from epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci 37(7):606–617PubMedCrossRefGoogle Scholar
  60. 60.
    Brentnall TA (2012) Arousal of cancer-associated stromal fibroblasts: palladin-activated fibroblasts promote tumor invasion. Cell Adhes Migr 6(6):488–494CrossRefGoogle Scholar
  61. 61.
    Camps JL et al (1990) Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc Natl Acad Sci U S A 87(1):75–79PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Orimo A et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348PubMedCrossRefGoogle Scholar
  63. 63.
    Cho JA, Park H, Lim EH, Lee KW (2012) Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int J Oncol 40(1):130–138PubMedPubMedCentralGoogle Scholar
  64. 64.
    Vong S, Kalluri R (2011) The role of stromal myofibroblast and extracellular matrix in tumor angiogenesis. Genes Cancer 2(12):1139–1145PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kucharzewska P et al (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A 110(18):7312–7317PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ (2016) Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest 126(4):1152–1162PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lee C et al (2015) 3D plasmonic nanobowl platform for the study of exosomes in solution. Nanoscale 7(20):9290–9297PubMedCrossRefGoogle Scholar
  68. 68.
    Zhu L, XH Q, Sun YL, Qian YM, Zhao XH (2014) Novel method for extracting exosomes of hepatocellular carcinoma cells. World J Gastroenterol 20(21):6651–6657PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    kWolfers J et al (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7(3):297–303CrossRefGoogle Scholar
  70. 70.
    Kogure T, Lin WL, Yan IK, Braconi C, Patel T (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54(4):1237–1248PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Guduric-Fuchs J et al (2012) Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 13:357PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Besse A et al (2007) TAK1-dependent signaling requires functional interaction with TAB2/TAB3. J Biol Chem 282(6):3918–3928PubMedCrossRefGoogle Scholar
  73. 73.
    Roh YS, Song J, Seki E (2014) TAK1 regulates hepatic cell survival and carcinogenesis. J Gastroenterol 49(2):185–194PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Li L et al (2015) Epigenetic modification of MiR-429 promotes liver tumour-initiating cell properties by targeting Rb binding protein 4. Gut 64(1):156–167PubMedCrossRefGoogle Scholar
  75. 75.
    Takahashi K, Yan IK, Haga H, Patel T (2014) Modulation of hypoxia-signaling pathways by extracellular linc-RoR. J Cell Sci 127(Pt 7):1585–1594PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Huang J et al (2016) Linc-RoR promotes c-Myc expression through hnRNP I and AUF1. Nucleic Acids Res 44(7):3059–3069PubMedCrossRefGoogle Scholar
  77. 77.
    Kogure T, Yan IK, Lin WL, Patel T (2013) Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes Cancer 4(7–8):261–272PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Jopling C (2012) Liver-specific microRNA-122: biogenesis and function. RNA Biol 9(2):137–142PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Basu S, Bhattacharyya SN (2014) Insulin-like growth factor-1 prevents miR-122 production in neighbouring cells to curtail its intercellular transfer to ensure proliferation of human hepatoma cells. Nucleic Acids Res 42(11):7170–7185PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Lou G et al (2015) Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 8:122PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Chiba M, Kimura M, Asari S (2012) Exosomes secreted from human colorectal cancer cell lines contain mRNAs, microRNAs and natural antisense RNAs, that can transfer into the human hepatoma HepG2 and lung cancer A549 cell lines. Oncol Rep 28(5):1551–1558PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132(3):344–362PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Poppelmann B et al (2005) NF{kappa}B-dependent down-regulation of tumor necrosis factor receptor-associated proteins contributes to interleukin-1-mediated enhancement of ultraviolet B-induced apoptosis. J Biol Chem 280(16):15635–15643PubMedCrossRefGoogle Scholar
  84. 84.
    Kim S et al (2004) Down-regulation of the tumor suppressor PTEN by the tumor necrosis factor-alpha/nuclear factor-kappaB (NF-kappaB)-inducing kinase/NF-kappaB pathway is linked to a default IkappaB-alpha autoregulatory loop. J Biol Chem 279(6):4285–4291PubMedCrossRefGoogle Scholar
  85. 85.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103(33):12481–12486PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Jennewein C, von Knethen A, Schmid T, Brune B (2010) MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA destabilization. J Biol Chem 285(16):11846–11853PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 104(5):1604–1609PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Gatto G et al (2008) Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-kappaB pathway. Nucleic Acids Res 36(20):6608–6619PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lu Z et al (2011) miR-301a as an NF-kappaB activator in pancreatic cancer cells. EMBO J 30(1):57–67PubMedCrossRefGoogle Scholar
  90. 90.
    Zhou R, Hu G, Gong AY, Chen XM (2010) Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Res 38(10):3222–3232PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Zhou R et al (2009) NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses. PLoS Pathog 5(12):e1000681PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    O’Hara SP et al (2010) NFkappaB p50-CCAAT/enhancer-binding protein beta (C/EBPbeta)-mediated transcriptional repression of microRNA let-7i following microbial infection. J Biol Chem 285(1):216–225PubMedCrossRefGoogle Scholar
  93. 93.
    Liu S et al (2010) Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell 17(4):333–347PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Wang H et al (2008) NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14(5):369–381PubMedCrossRefGoogle Scholar
  95. 95.
    Jella KK, Garcia A, McClean B, Byrne HJ, Lyng FM (2013) Cell death pathways in directly irradiated cells and cells exposed to medium from irradiated cells. Int J Radiat Biol 89(3):182–190PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Jella KK et al (2014) Exosomes are involved in mediating radiation induced bystander signaling in human keratinocyte cells. Radiat Res 181(2):138–145PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Jella KK et al (2016) Exosomal GAPDH from proximal tubule cells regulate ENaC activity. PLoS One 11(11):e0165763PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lyng FM, Desplanques M, Jella KK, Garcia A, McClean B (2012) The importance of serum serotonin levels in the measurement of radiation-induced bystander cell death in HaCaT cells. Int J Radiat Biol 88(10):770–772PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Li Z et al (2015) Co-culturing with high-charge and energy particle irradiated cells increases mutagenic joining of enzymatically induced DNA double-strand breaks in nonirradiated cells. Radiat Res 184(3):249–258PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Li Z, Wang H, Wang Y, Murnane JP, Dynan WS (2014) Effect of radiation quality on mutagenic joining of enzymatically-induced DNA double-strand breaks in previously irradiated human cells. Radiat Res 182(5):573–579PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Li Z et al (2013) Increased mutagenic joining of enzymatically-induced DNA double-strand breaks in high-charge and energy particle irradiated human cells. Radiat Res 180(1):17–24PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hofmeister V, Schrama D, Becker JC (2008) Anti-cancer therapies targeting the tumor stroma. Cancer Immunol Immunother 57(1):1–17PubMedCrossRefGoogle Scholar
  103. 103.
    Coulouarn C, Clement B (2014) Stellate cells and the development of liver cancer: therapeutic potential of targeting the stroma. J Hepatol 60(6):1306–1309PubMedCrossRefGoogle Scholar
  104. 104.
    Merchant N, Nagaraju GP, Rajitha B, Lammata S, Jella KK, Buchwald ZS, Lakka SS, Ali N (2017) Matrix metalloproteinases: their functional role in lung cancer. Carcinogenesis 38(8):766–780PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Al-Husein B, Abdalla M, Trepte M, Deremer DL, Somanath PR (2012) Antiangiogenic therapy for cancer: an update. Pharmacotherapy 32(12):1095–1111PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Llovet JM et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Montella L, Palmieri G, Addeo R, Del Prete S (2016) Hepatocellular carcinoma: will novel targeted drugs really impact the next future? World J Gastroenterol 22(27):6114–6126PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kudchadkar R, Gonzalez R, Lewis KD (2008) PI-88: a novel inhibitor of angiogenesis. Expert Opin Investig Drugs 17(11):1769–1776PubMedCrossRefGoogle Scholar
  109. 109.
    Liu CJ et al (2009) Heparanase inhibitor PI-88 as adjuvant therapy for hepatocellular carcinoma after curative resection: a randomized phase II trial for safety and optimal dosage. J Hepatol 50(5):958–968PubMedCrossRefGoogle Scholar
  110. 110.
    Kelly T (2005) Fibroblast activation protein-alpha and dipeptidyl peptidase IV (CD26): cell-surface proteases that activate cell signaling and are potential targets for cancer therapy. Drug Resist Updat 8(1–2):51–58PubMedCrossRefGoogle Scholar
  111. 111.
    Park JE et al (1999) Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem 274(51):36505–36512PubMedCrossRefGoogle Scholar
  112. 112.
    Huang Y et al (2011) Fibroblast activation protein-alpha promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions. Clin Exp Metastasis 28(6):567–579PubMedCrossRefGoogle Scholar
  113. 113.
    Levy MT et al (1999) Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology 29(6):1768–1778PubMedCrossRefGoogle Scholar
  114. 114.
    Christiansen VJ, Jackson KW, Lee KN, McKee PA (2007) Effect of fibroblast activation protein and alpha2-antiplasmin cleaving enzyme on collagen types I, III, and IV. Arch Biochem Biophys 457(2):177–186PubMedCrossRefGoogle Scholar
  115. 115.
    Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6(9):674–687PubMedCrossRefGoogle Scholar
  116. 116.
    Bellomo C, Caja L, Moustakas A (2016) Transforming growth factor beta as regulator of cancer stemness and metastasis. Br J Cancer 115(7):761–769PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Serova M et al (2015) Effects of TGF-beta signalling inhibition with galunisertib (LY2157299) in hepatocellular carcinoma models and in ex vivo whole tumor tissue samples from patients. Oncotarget 6(25):21614–21627PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Scott AM et al (2003) A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res 9(5):1639–1647PubMedPubMedCentralGoogle Scholar
  119. 119.
    Thomas MB et al (2009) Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol 27(6):843–850PubMedCrossRefGoogle Scholar
  120. 120.
    Zhu AX et al (2015) SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J Clin Oncol 33(6):559–566PubMedCrossRefGoogle Scholar
  121. 121.
    Thomas MB et al (2007) Phase 2 study of erlotinib in patients with unresectable hepatocellular carcinoma. Cancer 110(5):1059–1067PubMedCrossRefGoogle Scholar
  122. 122.
    Zhu AX et al (2007) Phase 2 study of cetuximab in patients with advanced hepatocellular carcinoma. Cancer 110(3):581–589PubMedCrossRefGoogle Scholar
  123. 123.
    O’Neil BH et al (2011) Phase II study of the mitogen-activated protein kinase 1/2 inhibitor selumetinib in patients with advanced hepatocellular carcinoma. J Clin Oncol 29(17):2350–2356PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    McNamara MG et al (2015) A phase II trial of second-line axitinib following prior antiangiogenic therapy in advanced hepatocellular carcinoma. Cancer 121(10):1620–1627PubMedCrossRefGoogle Scholar
  125. 125.
    Johnson PJ et al (2013) Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J Clin Oncol 31(28):3517–3524PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  1. 1.Department of Radiation OncologyEmory UniversityAtlantaUSA

Personalised recommendations