Role of E2F1 in Pancreatic Cancer

  • Prudhvi Lal Bhukya
  • Divya Aravind Tiraki
  • Shakuntala Mahilkar
Chapter

Abstract

Pancreatic cancer is the deadliest of human cancers to date. The hostile nature of pancreatic cancer, mostly due to its tendency for early local and distant spread, is in due course responsible for poor diagnosis and reduced survival. Most of the pancreatic cancers are originated in exocrine glands. About 95% of these exocrine cancers are adenocarcinomas that affect the pancreatic ducts. Other types of pancreatic cancers include neuroendocrine cancers that arise in endocrine cells. But these provide extensive capillary networks for metastasis of tumor cells. Several computational approaches are employed to couple the gene expression measurements with a network of known relationships between gene products, like the NetRank algorithm similar to Google’s PageRank algorithm, to determine the marker genes that are better involved in clinical outcome prediction. One such marker genes are those that encode transcription factors. One important group is E2F transcription factor family. These regulate a varied range of cellular functions, which include cell differentiation, cell proliferation, and cell death. The current chapter focuses on the E2F1 transcription factor, its mechanism of regulating the cell cycle, and its role in apoptosis and metastasis in context with the devastating pancreatic cancer. The insights into the molecular mechanisms with further investigation and research may provide improved diagnostic and treatment options for this type of cancer.

Keywords

Pancreatic cancer E2F1 Cell proliferation Cell cycle regulation 

References

  1. 1.
    Global cancer statistics, www.cdc.gov/cancer/international/statistics.htmGoogle Scholar
  2. 2.
    Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362(17):1605–1617CrossRefPubMedGoogle Scholar
  3. 3.
    Lowenfels AB, Maisonneuve P, DiMagno EP, Elitsur Y, Gates LK, Perrault J, Whitcomb DC (1997) Hereditary pancreatitis and the risk of pancreatic cancer. J Natl Cancer Inst 89(6):442–446CrossRefPubMedGoogle Scholar
  4. 4.
    Kovesdi I, Reichel R, Nevins JR (1986) Identification of a cellular transcription factor involved in E1A trans-activation. Cell 45(2):219–228CrossRefPubMedGoogle Scholar
  5. 5.
    Attwooll C, Denchi EL, Helin K (2004) The E2F family: specific functions and overlapping interests. EMBO J 23(24):4709–4716CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Trimarchi JM, Lees JA (2002) Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3(1):11–20CrossRefPubMedGoogle Scholar
  7. 7.
    Chen R, Dawson DW, Pan S, Ottenhof NA, De Wilde RF, Wolfgang CL, ..., Waghray M (2015) Proteins associated with pancreatic cancer survival in patients with resectable pancreatic ductal adenocarcinoma. Lab Invest 95(1):43–55Google Scholar
  8. 8.
    Magae J, Wu CL, Illenye S, Harlow E, Heintz NH (1996) Nuclear localization of DP and E2F transcription factors by heterodimeric partners and retinoblastoma protein family members. J Cell Sci 109(7):1717–1726PubMedGoogle Scholar
  9. 9.
    Gaubatz S, Lees JA, Lindeman GJ, Livingston DM (2001) E2F4 is exported from the nucleus in a CRM1-dependent manner. Mol Cell Biol 21(4):1384–1392CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Leone G, Nuckolls F, Ishida S, Adams M, Sears R, Jakoi L, ..., Nevins JR (2000) Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins. Mol Cell Biol 20(10):3626–3632Google Scholar
  11. 11.
    Di Stefano L, Jensen MR, Helin K (2003) E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J 22(23):6289–6298CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Huang B, Deo D, Xia M, Vassilev LT (2009) Pharmacologic p53 activation blocks cell cycle progression but fails to induce senescence in epithelial cancer cells. Mol Cancer Res 7(9):1497–1509CrossRefPubMedGoogle Scholar
  13. 13.
    Lodygin D, Menssen A, Hermeking H (2002) Induction of the Cdk inhibitor p21 by LY83583 inhibits tumor cell proliferation in a p53-independent manner. J Clin Invest 110(11):1717–1727CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Khanna A, Pimanda JE, Westermarck J (2013) Cancerous inhibitor of protein phosphatase 2A, an emerging human oncoprotein and a potential cancer therapy target. Cancer Res 73(22):6548–6553CrossRefPubMedGoogle Scholar
  15. 15.
    Korotayev K, Chaussepied M, Ginsberg D (2008a) ERK activation is regulated by E2F1 and is essential for E2F1-induced S phase entry. Cell Signal 20(6):1221–1226CrossRefPubMedGoogle Scholar
  16. 16.
    Caldas C, Kern SE (1995) K-ras mutation and pancreatic adenocarcinoma. Int J Pancreatol 18(1):1–6PubMedGoogle Scholar
  17. 17.
    Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M (1988) Most human carcinomas of the exocrine pancreas contain mutant cK-ras genes. Cell 53(4):549–554CrossRefPubMedGoogle Scholar
  18. 18.
    Grünewald K, Lyons J, Fröhlich A, Feichtinger H, Weger RA, Schwab G, ..., Bartram CR (1989) High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas. Int J Cancer 43(6):1037–1041Google Scholar
  19. 19.
    Fang Z et al (2015) E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2. Biochem Biophys Res Commun 464(2):407–415CrossRefPubMedGoogle Scholar
  20. 20.
    Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells. Clin Cancer Res 10(7):2307–2318CrossRefPubMedGoogle Scholar
  21. 21.
    Putzer BM, Stiewe T, Crespo F, Esche H (2000) Improved safety through tamoxifen-regulated induction of cytotoxic genes delivered by Ad vectors for cancer gene therapy. Gene Ther 7(15):1317–1325CrossRefPubMedGoogle Scholar
  22. 22.
    Phillips AC, Vousden KH (2001) E2F-1 induced apoptosis. Apoptosis 6(3):173–182CrossRefPubMedGoogle Scholar
  23. 23.
    Qin XQ, Livingston DM, Kaelin WG, Adams PD (1994) Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci 91(23):10918–10922CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Wu X, Levine AJ (1994) p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci 91(9):3602–3606CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Pierce AM, Gimenez-Conti IB, Schneider-Broussard R, Martinez LA, Conti CJ, Johnson DG (1998) Increased E2F1 activity induces skin tumors in mice heterozygous and nullizygous for p53. Proc Natl Acad Sci 95(15):8858–8863CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Holmberg C, Helin K, Sehested M, KarlstroÈm O (1998) E2F-1-induced p53-independent apoptosis in transgenic mice. Oncogene 17(2):143–155CrossRefPubMedGoogle Scholar
  27. 27.
    Phillips AC, Bates S, Ryan KM, Helin K, Vousden KH (1997) Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes Dev 11(14):1853–1863CrossRefPubMedGoogle Scholar
  28. 28.
    Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W, ..., Kaelin Jr WG (2000) Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407(6804):645–648Google Scholar
  29. 29.
    Phillips AC, Ernst MK, Bates S, Rice NR, Vousden KH (1999) E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol Cell 4(5):771–781CrossRefPubMedGoogle Scholar
  30. 30.
    Tanaka H, Matsumura I, Ezoe S, Satoh Y, Sakamaki T, Albanese C, ..., Kanakura Y (2002) E2F1 and c-Myc potentiate apoptosis through inhibition of NF-κB activity that facilitates MnSOD-mediated ROS elimination. Mol Cell 9(5):1017–1029Google Scholar
  31. 31.
    Yamazaki K, Yajima T, Nagao T, Shinkawa H, Kondo F, Hanami K, ..., Ishida Y (2003) Expression of transcription factor E2F-1 in pancreatic ductal carcinoma: an immunohistochemical study. Pathol-Res Pract 199(1):23–28Google Scholar
  32. 32.
    Plath T, Peters M, Detjen K, Welzel M, Von Marschall Z, Radke C, ..., Rosewicz S (2002) Overexpression of pRB in human pancreatic carcinoma cells: function in chemotherapy-induced apoptosis. J Natl Cancer Inst 94(2):129–142Google Scholar
  33. 33.
    Elliott MJ, Farmer MR, Atienza Jr C, Stilwell A, Dong YB, Yang HL, ..., McMasters KM (2002a) E2F-1 gene therapy induces apoptosis and increases chemosensitivity in human pancreatic carcinoma cells. Tumor Biol 23(2):76–86Google Scholar
  34. 34.
    Rödicker F, Stiewe T, Zimmermann S, Pützer BM (2001) Therapeutic efficacy of E2F1 in pancreatic cancer correlates with TP73 induction. Cancer Res 61(19):7052–7055PubMedGoogle Scholar
  35. 35.
    Nip J, Strom DK, Fee BE, Zambetti G, Cleveland JL, Hiebert SW (1997) E2F-1 cooperates with topoisomerase II inhibition and DNA damage to selectively augment p53-independent apoptosis. Mol Cell Biol 17(3):1049–1056CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Pruschy M, Wirbelauer C, Glanzmann C, Bodis S, Krek W (1999) E2F-1 has properties of a radiosensitizer and its regulation by cyclin A kinase is required for cell survival of fibrosarcoma cells lacking p53. Cell Growth Differ 10:141–146PubMedGoogle Scholar
  37. 37.
    Hunt KK, Deng J, Liu TJ, Wilson-Heiner M, Swisher SG, Clayman G, Hung MC (1997) Adenovirus-mediated overexpression of the transcription factor E2F-1 induces apoptosis in human breast and ovarian carcinoma cell lines and does not require p53. Cancer Res 57(21):4722–4726PubMedGoogle Scholar
  38. 38.
    Shan B, Lee WH (1994) Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol Cell Biol 14(12):8166–8173CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Dong YB, Yang HL, Elliott MJ, Liu TJ, Stilwell A, Atienza C, McMasters KM (1999) Adenovirus-mediated E2F-1 gene transfer efficiently induces apoptosis in melanoma cells. Cancer 86(10):2021–2033CrossRefPubMedGoogle Scholar
  40. 40.
    Yang HL, Dong YB, Elliott MJ, Liu TJ, Atienza C, Stilwell A, McMasters KM (1999) Adenovirus-mediated E2F-1 gene transfer inhibits MDM2 expression and efficiently induces apoptosis in MDM2-overexpressing tumor cells. Clin Cancer Res 5(8):2242–2250PubMedGoogle Scholar
  41. 41.
    Liu TJ, Wang M, Breau RL, Henderson Y, El-Naggar AK, Steck KD, ..., Clayman GL (1999) Apoptosis induction by E2F-1 via adenoviral-mediated gene transfer results in growth suppression of head and neck squamous cell carcinoma cell lines. Cancer Gene Ther 6(2):163–172Google Scholar
  42. 42.
    Fueyo J, Gomez-Manzano C, Yung WKA, Liu TJ, Alemany R, McDonnell TJ, ..., Kyritsis AP (1998a) Overexpression of E2F-1 in glioma triggers apoptosis and suppresses tumor growth in vitro and in vivo. Nat Med 4(6):685–690Google Scholar
  43. 43.
    Stubbs MC, Strachan GD, Hall DJ (1999) An early S phase checkpoint is regulated by the E2F1 transcription factor. Biochem Biophys Res Commun 258(1):77–80CrossRefPubMedGoogle Scholar
  44. 44.
    Krek W, Xu G, Livingston DM (1995) Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell 83(7):1149–1158CrossRefPubMedGoogle Scholar
  45. 45.
    Bilodeau JF, Faure R, Piedboeuf B, Mirault ME (2000) Hyperoxia induces S-phase cell-cycle arrest and p21 Cip1/Waf1-independent Cdk2 inhibition in human carcinoma T47D-H3 cells. Exp Cell Res 256(2):347–357CrossRefPubMedGoogle Scholar
  46. 46.
    Meng RD, Phillips PETER, El-Deiry WS (1999) p53-independent increase in E2F-1 expression enhances the cytotoxic effects of etoposide and of adriamycin. Int J Oncol 14(1):5–14PubMedGoogle Scholar
  47. 47.
    Huang Y, Ishiko T, Nakada S, Utsugisawa T, Kato T, Yuan ZM (1997) Role for E2F in DNA damage-induced entry of cells into S phase. Cancer Res 57(17):3640–3643PubMedGoogle Scholar
  48. 48.
    Hu QL, Jiang QY, Jin X, Shen J, Wang K, Li YB, ..., Li ZH (2013) Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials 34(9):2265–2276Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  • Prudhvi Lal Bhukya
    • 1
  • Divya Aravind Tiraki
    • 2
  • Shakuntala Mahilkar
    • 1
  1. 1.National Institute of VirologyPuneIndia
  2. 2.Interactive Research School for Health Affairs (IRSHA)Bharati VidyapeethPuneIndia

Personalised recommendations