Neurological Disorders and Challenging Intervention in Xeroderma Pigmentosum and Cockayne Syndrome

  • Masaharu HayashiEmail author


Xeroderma pigmentosum (XP) is a genetic disorder in DNA nucleotide excision repair and is characterized by skin disorders and progressive neurological impairment, which is complicated in some complementation groups, especially in XP group A (XP-A). Cockayne syndrome (CS) is caused by abnormalities in genes of transcription-coupled repair, and patients with CS develop growth failure, characteristic facial features, skin symptoms, and neurological disorders. Model animals have not reproduced neurological disorders in either XP-A or CS. We have performed immunohistochemistry for oxidative stress markers, antioxidant enzymes, neurotransmitters, and markers of glial cells in autopsy brains. We have also performed enzyme-linked immunosorbent assay for oxidative stress in the urines and cerebrospinal fluid, isolated from patients with XP-A and CS. It has been demonstrated that oxidative DNA damage, disturbed metabolism of monoamines and melatonin, vascular changes in the brain, and/or pathology of oligodendrocytes and microglial cells may be involved in neurodegeneration, suggesting the possibility of treatments with free radical scavengers, monoaminergic agents, and/or melatonin. We reported that the therapy with low dose of levodopa ameliorated laryngeal dystonia and involuntary movements in the arm in some patients with XP-A. In addition, it is speculated that melatonin may be a therapeutic option in patients with XP-A and CS.


Xeroderma pigmentosum Cockayne syndrome Immunohistochemistry Enzyme-linked immunosorbent assay Oxidative stress Monoamine Melatonin Glial cells 


  1. 1.
    Fu L, Xu X, Ren R, Wu J, Zhang W, Yang J, Ren X, Wang S, Zhao Y, Sun L, Yu Y, Wang Z, Yang Z, Yuan Y, Qiao J, Izpisua Belmonte JC, Qu J, Liu GH. Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs. Protein Cell. 2016;7(3):210–21. Scholar
  2. 2.
    Rapin I. Disorders of nucleotide excision repair. Handb Clin Neurol. 2013;113:1637–50. Scholar
  3. 3.
    Rapin I, Weidenheim K, Lindenbaum Y, Rosenbaum P, Merchant SN, Krishna S, Dickson DW. Cockayne syndrome in adults: review with clinical and pathologic study of a new case. J Child Neurol. 2006;21(11):991–1006. Scholar
  4. 4.
    Jaarsma D, van der Pluijm I, de Waard MC, Haasdijk ED, Brandt R, Vermeij M, Rijksen Y, Maas A, van Steeg H, Hoeijmakers JH, van der Horst GT. Age-related neuronal degeneration: complementary roles of nucleotide excision repair and transcription-coupled repair in preventing neuropathology. PLoS Genet. 2011;7(12):e1002405. Scholar
  5. 5.
    Hayashi M. Role of oxidative stress in xeroderma pigmentosum. Adv Exp Med Biol. 2008;637:120–7.CrossRefGoogle Scholar
  6. 6.
    Nishigori C, Miyachi Y, Imamura S, Takebe H. Reduced superoxide dismutase activity in xeroderma pigmentosum fibroblasts. J Invest Dermatol. 1989;93:506–10. Scholar
  7. 7.
    Parlanti E, Pietraforte D, Iorio E, Visentin S, De Nuccio C, Zijno A, D'Errico M, Simonelli V, Sanchez M, Fattibene P, Falchi M, Dogliotti E. An altered redox balance and increased genetic instability characterize primary fibroblasts derived from xeroderma pigmentosum group A patients. Mutat Res. 2015;782:34–43. Scholar
  8. 8.
    Hayashi M, Tanuma N, Miyata R. Oxidative stress in developmental brain disorders. Adv Exp Med Biol. 2012;724:278–90.CrossRefGoogle Scholar
  9. 9.
    Kikuchi K, Takeshige N, Miura N, Morimoto Y, Ito T, Tancharoen S, Miyata K, Kikuchi C, Iida N, Uchikado H, Miyagi N, Shiomi N, Kuramoto T, Maruyama I, Morioka M, Kawahara KI. Beyond free radical scavenging: beneficial effects of edaravone (Radicut) in various diseases (review). Exp Ther Med. 2012;3(1):3–8. Scholar
  10. 10.
    Itoh M, Hayashi M, Shioda K, Minagawa M, Isa F, Tamagawa K, Morimatsu Y, Oda M. Neurodegeneration in hereditary nucleotide repair disorders. Brain Dev. 1999;21(5):326–33.CrossRefGoogle Scholar
  11. 11.
    Hayashi M, Araki S, Kohyama J, Shioda K, Fukatsu R, Tamagawa K. Brainstem and basal ganglia lesions in xeroderma pigmentosum group A. J Neuropathol Exp Neurol. 2004;63(10):1048–57. Scholar
  12. 12.
    Miyata R, Sasaki T, Hayashi M, Araki S, Shimohira M, Kohyama J. Low dose of levodopa is effective for laryngeal dystonia in xeroderma pigmentosum group A. Brain Dev. 2010;32(8):685–7. Scholar
  13. 13.
    Nomura Y, Segawa M. Neurology of Tourette’s syndrome (TS) TS as a developmental dopamine disorder: a hypothesis. Brain Dev. 2003;25(Suppl 1):S37–42.CrossRefGoogle Scholar
  14. 14.
    Ueda T, Kanda F, Aoyama N, Fujii M, Nishigori C, Toda T. Neuroimaging features of xeroderma pigmentosum group A. Brain Behav. 2012;2(1):1–5. Scholar
  15. 15.
    Kohyama J, Furushima W, Sugawara Y, Shimohira M, Hasegawa T, Hayashi M, Moriwaki S, Iwakawa Y. Convulsive episodes in patients with group A xeroderma pigmentosum. Acta Neurol Scand. 2005;112(4):265–9. Scholar
  16. 16.
    Hayashi M, Ohto T, Shioda K, Fukatsu R. Lesions of cortical GABAergic interneurons and acetylcholine neurons in xeroderma pigmentosum group A. Brain Dev. 2012;34(4):287–92. Scholar
  17. 17.
    Galimberti D, Scarpini E. Old and new acetylcholinesterase inhibitors for Alzheimer’s disease. Expert Opin Investig Drugs. 2016;25:1181. Scholar
  18. 18.
    Kondoh T, Kanno A, Itoh H, Nakashima M, Honda R, Kojima M, Noguchi M, Nakane H, Nozaki H, Sasaki H, Nagai T, Kosaki R, Kakee N, Okuyama T, Fukuda M, Ikeda M, Shibata Y, Moriuchi H. Donepezil significantly improves abilities in daily lives of female down syndrome patients with severe cognitive impairment: a 24-week randomized, double-blind, placebo-controlled trial. Int J Psychiatry Med. 2011;41:71–89. Scholar
  19. 19.
    Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin—a pleiotropic, orchestrating regulator molecule. Prog Neurobiol. 2011;93(3):350–84. Scholar
  20. 20.
    Reiter RJ, Tan DX, Fuentes-Broto L. Melatonin: a multitasking molecule. Prog Brain Res. 2010;181:127–51. Scholar
  21. 21.
    Escribano BM, Colín-González AL, Santamaría A, Túnez I. The role of melatonin in multiple sclerosis, Huntington’s disease and cerebral ischemia. CNS Neurol Disord Drug Targets. 2014;13(6):1096–119.CrossRefGoogle Scholar
  22. 22.
    Okoshi Y, Tanuma N, Miyata R, Hayashi M. Melatonin alterations and brain acetylcholine lesions in sleep disorders in Cockayne syndrome. Brain Dev. 2014;36(10):907–13. Scholar
  23. 23.
    Wilking M, Ndiaye M, Mukhtar H, Ahmad N. Circadian rhythm connections to oxidative stress: implications for human health. Antioxid Redox Signal. 2013;19(2):192–208. Scholar
  24. 24.
    Miyata R, Tanuma N, Sakuma H, Hayashi M. Circadian rhythms of oxidative stress markers and melatonin metabolite in patients with xeroderma pigmentosum group A. Oxidative Med Cell Longev. 2016;2016:5741517. Scholar
  25. 25.
    Schwichtenberg AJ, Malow BA. Melatonin treatment in children with developmental disabilities. Sleep Med Clin. 2015;10(2):181–7. Scholar
  26. 26.
    Hayashi M, Saito-Miwa N, Tanuma N, Kubota M. Brain vascular changes in Cockayne syndrome. Neuropathology. 2012;32(2):113–7. Scholar
  27. 27.
    Gitiaux C, Blin-Rochemaure N, Hully M, Echaniz-Laguna A, Calmels N, Bahi-Buisson N, Desguerre I, Dabaj I, Wehbi S, Quijano-Roy S, Laugel V. Progressive demyelinating neuropathy correlates with clinical severity in Cockayne syndrome. Clin Neurophysiol. 2015;126(7):1435–9. Scholar
  28. 28.
    Shehata L, Simeonov DR, Raams A, Wolfe L, Vanderver A, Li X, Huang Y, Garner S, Boerkoel CF, Thurm A, Herman GE, Tifft CJ, He M, Jaspers NG, Gahl WA. ERCC6 dysfunction presenting as progressive neurological decline with brain hypomyelination. Am J Med Genet A. 2014;164A(11):2892–900. Scholar
  29. 29.
    Kassubek J, Sperfeld AD, Pinkhardt EH, Unrath A, Müller HP, Scharffetter-Kochanek K, Ludolph AC, Berneburg M. The cerebro-morphological fingerprint of a progeroid syndrome: white matter changes correlate with neurological symptoms in xeroderma pigmentosum. PLoS One. 2012;7(2):e30926. Scholar
  30. 30.
    Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci. 2014;15(5):300–12. Scholar
  31. 31.
    Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, Yoshihara Y, Omata K, Matsumoto K, Tsuchiya KJ, Iwata Y, Tsujii M, Sugiyama T, Mori N. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiat. 2013;70(1):49–58. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Brain Development and Neural RegenerationTokyo Metropolitan Institute of Medical ScienceTokyoJapan

Personalised recommendations