Advertisement

Biomarkers of Depression: Potential Diagnostic Tools

  • Matea Nikolac Perkovic
  • Gordana Nedic Erjavec
  • Dubravka Svob Strac
  • Nela Pivac
Chapter

Abstract

Major depressive disorder (MDD) is a severe, chronic, and debilitating mental disorder, with complex biological dysfunctions and of polygenic origin. It is associated with frequent disability-adjusted life years (DALYs), increased suicide risk, decreased quality of life, significant health costs, and high disease burden. There are no biological tests that are able to objectively predict the diagnosis of MDD, and there are no validated biomarkers with high specificity and sensitivity that might facilitate early diagnosis and prevent misdiagnosis. Since MDD is so heterogeneous and associated with different clinical presentation and different clinical symptoms, the development of a single biomarker is highly unlikely. Therefore, there is an unmet need to search for the validated set of different biomarkers or the complex multi-marker panels that might be used to reliably and reproducibly predict and confirm the MDD diagnosis. Reliable panel or a set of biomarkers, when developed, will have a significant clinical use, to lead toward the personalized treatment strategies, and might reduce health costs, DALYs, and decrease disease burden.

Keywords

Depression Diagnosis Biomarkers Neurotransmitters Neurotrophins Hypothalamic-pituitary-adrenal axis Genetic variants Imaging biomarkers 

References

  1. Andrews PW, Bharwani A, Lee KR, Fox M, Thomson JA Jr. Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci Biobehav Rev. 2015;51:164–88.PubMedCrossRefGoogle Scholar
  2. Angelucci F, Croce N, Spalletta G, Dinallo V, Gravina P, Bossù P, Federici G, Caltagirone C, Bernardini S. Paroxetine rapidly modulates the expression of brain-derived neurotrophic factor mRNA and protein in a human glioblastoma-astrocytoma cell line. Pharmacology. 2011;87:5–10.PubMedCrossRefGoogle Scholar
  3. Armitage R, Emslie GJ, Hoffmann RF, Rintelmann J, Rush AJ. Delta sleep EEG in depressed adolescent females and healthy controls. J Affect Disord. 2001;63(1–3):139–48.PubMedCrossRefGoogle Scholar
  4. Bach-Mizrachi H, Underwood MD, Kassir SA, Bakalian MJ, Sibille E, Tamir H, Mann JJ, Arango V. Neuronal tryptophan hydroxylase mRNA expression in the human dorsal and median raphe nuclei: major depression and suicide. Neuropsychopharmacology. 2006;31(4):814–24.PubMedCrossRefGoogle Scholar
  5. Bahi A, Chandrasekar V, Dreyer JL. Selective lentiviral-mediated suppression of microRNA124a in the hippocampus evokes antidepressants-like effects in rats. Psychoneuroendocrinology. 2014;46:78–87.PubMedCrossRefGoogle Scholar
  6. Bai M, Zhu X, Zhang Y, Zhang S, Zhang L, Xue L, Yi J, Yao S, Zhang X. Abnormal hippocampal BDNF and miR-16 expression is associated with depression-like behaviors induced by stress during early life. PLoS One. 2012;7:e46921.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH. Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology. 2007;32:1888–902.PubMedCrossRefGoogle Scholar
  8. Belvederi Murri M, Pariante C, Mondelli V, Masotti M, Atti AR, Mellacqua Z, Antonioli M, Ghio L, Menchetti M, Zanetidou S, Innamorati M, Amore M. HPA axis and aging in depression: systematic review and meta-analysis. Psychoneuroendocrinology. 2014;41:46–62.PubMedCrossRefGoogle Scholar
  9. Belzeaux R, Formisano-Tréziny C, Loundou A, Boyer L, Gabert J, Samuelian JC, Féron F, Naudin J, Ibrahim EC. Clinical variations modulate patterns of gene expression and define blood biomarkers in major depression. J Psychiatr Res. 2010;44:1205–13.PubMedCrossRefGoogle Scholar
  10. Bilello JA, Thurmond LM, Smith KM, Pi B, Rubin R, Wright SM, Taub F, Henry ME, Shelton RC, Papakostas GI. MDDScore: confirmation of a blood test to aid in the diagnosis of major depressive disorder. J Clin Psychiatry. 2015;76(2):e100–206.Google Scholar
  11. Bilello JA. Seeking an objective diagnosis of depression. Biomark Med. 2016;10(8):861–75.PubMedCrossRefGoogle Scholar
  12. Binder EB. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology. 2009;34(Suppl. 1):S186–95.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Blackwood DHR, Whalley LJ, Christie JE, Blackburn IM, Stclair DM, Mcinnes A. Changes in auditory-p3 event-related potential in schizophrenia and depression. Br J Psychiatry. 1987;150:154–60.PubMedCrossRefGoogle Scholar
  14. Boutros N, Nasrallah H, Leighty R, Torello M, Tueting P, Olson S. Auditory evoked potentials, clinical vs. research applications. Psychiatry Res. 1997;69(2–3):183–95.PubMedCrossRefGoogle Scholar
  15. Bradley RG, Binder EB, Epstein MP, Tang Y, Nair HP, Liu W, Gillespie CF, Berg T, Evces M, Newport DJ, Stowe ZN, Heim CM, Nemeroff CB, Schwartz A, Cubells JF, Ressler KJ. Influence of child abuse on adult depression: moderation by the corticotropin-releasing hormone receptor gene. Arch Gen Psychiatry. 2008;65(2):190–200.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Breitenstein B, Scheuer S, Holsboer F. Are there meaningful biomarkers of treatment response for depression? Drug Discov Today. 2014;19(5):539–61.PubMedCrossRefGoogle Scholar
  17. Brown GW, Craig TKJ, Harris TO, Herbert J, Hodgson K, Tansey KE, Uher R. Functional polymorphism in the brain-derived neurotrophic factor gene interacts with stressful life events but not childhood maltreatment in the etiology of depression. Depress Anxiety. 2014;31(4):326–34.PubMedCrossRefGoogle Scholar
  18. Bruder GE, Kayser J, Tenke CE, Leite P, Schneier FR, Stewart JW, Quitkin FM. Cognitive ERPs in depressive and anxiety disorders during tonal and phonetic oddball tasks. Clin Electroencephalogr. 2002;33(3):119–24.PubMedCrossRefGoogle Scholar
  19. Bruder GE, Kayser J, Tenke CE. Event-related brain potentials in depression: clinical, cognitive and neurophysiologic implications. In: Luck SJ, Kappenman ES, editors. The Oxford handbook of event-related potential components. New York: Oxford University Press; 2009. p. 563–92.Google Scholar
  20. Carvalho A, Moraes H, Silveira H, Ribeiro P, Piedade RAM, Deslandes AC, Laks J, Versiani M. EEG frontal asymmetry in the depressed and remitted elderly: is it related to the trait or to the state of depression? J Affect Disord. 2011;129(1–3):143–8.PubMedCrossRefGoogle Scholar
  21. Cattaneo A, Bocchio-Chiavetto L, Zanardini R, Milanesi E, Placentino A, Gennarelli M. Reduced peripheral brain-derived neurotrophic factor mRNA levels are normalized by antidepressant treatment. Int J Neuropsychopharmacol. 2010;13(1):103–8.PubMedCrossRefGoogle Scholar
  22. Chang JS, Yoo CS, Yi SH, Her JY, Choi HM, Ha TH, Park T, Ha K. An integrative assessment of the psychophysiologic alterations in young women with recurrent major depressive disorder. Psychosom Med. 2012;74(5):495–500.PubMedCrossRefGoogle Scholar
  23. Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. 2003;4(4):299–309.PubMedCrossRefGoogle Scholar
  24. Cheetham SC, Crompton MR, Katona CL, Horton RW. Brain 5-HT1 binding sites in depressed suicides. Psychopharmacology. 1990;102(4):544–8.PubMedCrossRefGoogle Scholar
  25. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry. 2001;50(4):260–5.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cottingham C, Wang Q. α2 Adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev. 2012;36:2214–25.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993;262:689–95.PubMedCrossRefGoogle Scholar
  28. de Azevedo Cardoso T, Mondin TC, Wiener CD, Marques MB, Fucolo Bde A, Pinheiro RT, Mattos de Souza LD, Azevedo da Silva R, Jansen K, Oses JP. Neurotrophic factors, clinical features and gender differences in depression. Neurochem Res. 2014;39(8):1571–8.PubMedCrossRefGoogle Scholar
  29. Debener S, Beauducel A, Nessler D, Brocke B, Heilemann H, Kayser J. Is resting anterior EEG alpha asymmetry a trait marker for depression? Neuropsychobiology. 2000;41(1):31–7.PubMedCrossRefGoogle Scholar
  30. Deldin PJ, Chiu P. Cognitive restructuring and EEG in major depression. Biol Psychol. 2005;70(3):141–51.PubMedCrossRefGoogle Scholar
  31. Dhir A, Kulkarni SK. Nitric oxide and major depression. Nitric Oxide Biol Chem. 2011;24:125–31.CrossRefGoogle Scholar
  32. Di Giovanni G, Svob Strac D, Sole M, Unzeta M, Tipton KF, Mück-Šeler D, Bolea I, Della Corte L, Nikolac Perkovic M, Pivac N, Smolders IJ, Stasiak A, Fogel WA, De Deurwaerdère P. Monoaminergic and histaminergic strategies and treatments in brain diseases. Front Neurosci. 2016;10:541.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Diner BC, Holcomb PJ, Dykman RA. P300 in major depressive disorder. Psychiatry Res. 1985;15(3):175–84.PubMedCrossRefGoogle Scholar
  34. Diniz BS, Teixeira AL, Miranda AS, Talib LL, Gattaz WF, Forlenza OV. Circulating Glial-derived neurotrophic factor is reduced in late-life depression. J Psychiatr Res. 2012;46(1):135–9.PubMedCrossRefGoogle Scholar
  35. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctot KL. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.PubMedCrossRefGoogle Scholar
  36. Dranovsky A, Hen R. Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry. 2006;59(12):1136–43.PubMedCrossRefGoogle Scholar
  37. Du X, Pang TY. Is dysregulation of the HPA axis a core pathophysiology mediating comorbid depression in neurodegenerative diseases? Front Psych. 2015;6:32.  https://doi.org/10.3389/fpsyt.2015.00032.CrossRefGoogle Scholar
  38. Duman RS. Depression: a case of neuronal life and death? Biol Psychiatry. 2004;56(3):140–5.PubMedCrossRefGoogle Scholar
  39. Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 2007;64:327–37.PubMedCrossRefGoogle Scholar
  40. Dutta A, McKie S, Deakin JFW. Ketamine and other potential glutamate antidepressants. Psychiatry Res. 2015;225:1–13.PubMedCrossRefGoogle Scholar
  41. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry. 2003;60:804–15.PubMedCrossRefGoogle Scholar
  42. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257–69.PubMedCrossRefGoogle Scholar
  43. Eyre HA, Air T, Pradhan A, Johnston J, Lavretsky H, Stuart MJ, Baune BT. A meta-analysis of chemokines in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;68:1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fajardo O, Galeno J, Urbina M, Carreira I, Lima L. Serotonin, serotonin 5-HT(1A) receptors and dopamine in blood peripheral lymphocytes of major depression patients. Int Immunopharmacol. 2003;3(9):1345–52.PubMedCrossRefGoogle Scholar
  45. Fernandes BS, Gama CS, Kauer-Sant’Anna M, Lobato MI, Belmonte-de-Abreu P, Kapczinski F. Serum brain-derived neurotrophic factor in bipolar and unipolar depression: a potential adjunctive tool for differential diagnosis. J Psychiatr Res. 2009;43(15):1200–4.PubMedCrossRefGoogle Scholar
  46. Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(1):70–5.PubMedCrossRefGoogle Scholar
  47. Feyissa AM, Woolverton WL, Miguel-Hidalgo JJ, Wang Z, Kyle PB, Hasler G, Stockmeier CA, Iyo AH, Karolewicz B. Elevated level of metabotropic glutamate receptor 2/3 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(2):279–83.PubMedCrossRefGoogle Scholar
  48. Fingelkurts AA, Fingelkurts AA, Rytsala H, Suominen K, Isometsa E, Kahkonen S. Impaired functional connectivity at EEG alpha and theta frequency bands in major depression. Hum Brain Mapp. 2007;28(3):247–61.PubMedCrossRefGoogle Scholar
  49. Flint J, Kendler KS. The genetics of major depression. Neuron. 2014;81(3):484–503.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Frey BN, Andreazza AC, Houenou J, Jamain S, Goldstein BI, Frye MA, Leboyer M, Berk M, Malhi GS, Lopez-Jaramillo C, Taylor VH, Dodd S, Frangou S, Hall GB, Fernandes BS, Kauer-Sant'Anna M, Yatham LN, Kapczinski F, Young LT. Biomarkers in bipolar disorder: a positional paper from the International Society for Bipolar Disorders Biomarkers Task Force. Aust N Z J Psychiatry. 2013;47(4):321–32.PubMedCrossRefGoogle Scholar
  51. Fries P. Rhythms for cognition: communication through coherence. Neuron. 2015;88(1):220–35.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Frisch A, Postilnick D, Rockah R, Michaelovsky E, Postilnick S, Birman E, Laor N, Rauchverger B, Kreinin A, Poyurovsky M, Schneidman M, Modai I, Weizman R. Association of unipolar major depressive disorder with genes of the serotonergic and dopaminergic pathways. Mol Psychiatry. 1999;4:389–92.PubMedCrossRefGoogle Scholar
  53. Frodl T, Schüle C, Schmitt G, Born C, Baghai T, Zill P, Bottlender R, Rupprecht R, Bondy B, Reiser M, Möller HJ, Meisenzahl EM. Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression. Arch Gen Psychiatry. 2007;64:410–6.PubMedCrossRefGoogle Scholar
  54. Fuchikami M, Morinobu S, Segawa M, Okamoto Y, Yamawaki S, Ozaki N, Inoue T, Kusumi I, Koyama T, Tsuchiyama K, Terao T. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One. 2011;6(8):e23881.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Goetz RR, Puigantich J, Dahl RE, Ryan ND, Asnis GM, Rabinovich H, Nelson B. EEG sleep of young-adults with major depression—a controlled-study. J Affect Disord. 1991;22(1–2):91–100.PubMedCrossRefGoogle Scholar
  56. Gold BI, Bowers MB Jr, Roth RH, Sweeney DW. GABA levels in CSF of patients with psychiatric disorders. Am J Psychiatry. 1980;137:362–4.PubMedCrossRefGoogle Scholar
  57. Gold C, Fachner J, Erkkila J. Validity and reliability of electroencephalographic frontal alpha asymmetry and frontal midline theta as biomarkers for depression. Scand J Psychol. 2013;54(2):118–26.PubMedCrossRefGoogle Scholar
  58. Grabe HJ, Schwahn C, Appel K, Mahler J, Schulz A, Spitzer C, Fenske K, Barnow S, Lucht M, Freyberger HJ, John U, Teumer A, Wallaschofski H, Nauck M, Völzke H. Childhood maltreatment, the corticotropin-releasing hormone receptor gene and adult depression in the general population. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(8):1483–93.PubMedCrossRefGoogle Scholar
  59. Gray AL, Hyde TM, Deep-Soboslay A, Kleinman JE, Sodhi MS. Sex differences in glutamate receptor gene expression in major depression and suicide. Mol Psychiatry. 2015;20:1057–68.PubMedCrossRefGoogle Scholar
  60. Grin-Yatsenko VA, Baas I, Ponomarev VA, Kropotov JD. Independent component approach to the analysis of EEG recordings at early stages of depressive disorders. Clin Neurophysiol. 2010;121(3):281–9.PubMedCrossRefGoogle Scholar
  61. Gross-Isseroff R, Israeli M, Biegon A. Autoradiographic analysis of tritiated imipramine binding in the human brain postmortem: effects of suicide. Arch Gen Psychiatry. 1989;46:237–41.PubMedCrossRefGoogle Scholar
  62. Guilloux JP, Douillard-Guilloux G, Kota R, Wang X, Gardier AM, Martinowich K, Tseng GC, Lewis DA, Sibille E. Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. Mol Psychiatry. 2012;17(11):1130–42.PubMedCrossRefGoogle Scholar
  63. Gururajan A, Clarke G, Dinan TG, Cryan JF. Molecular biomarkers of depression. Neurosci Biobehav Rev. 2016;64:101–33.PubMedCrossRefGoogle Scholar
  64. Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimaki M. Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain Behav Immun. 2015;49:206–15.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hagemann D, Naumann E, Thayer JF. The quest for the EEG reference revisited: a glance from brain asymmetry research. Psychophysiology. 2001;38(5):847–57.PubMedCrossRefGoogle Scholar
  66. Hajek T, Kopecek M, Hoschl C. Reduced hippocampal volumes in healthy carriers of brain-derived neurotrophic factor Val66Met polymorphism: meta-analysis. World J Biol Psychiatry. 2012;13(3):178–87.PubMedCrossRefGoogle Scholar
  67. Halaris A, Sharma A, Meresh E, Pandey G, Kang R, Hage B, Garlenski B, Sinacore J. Serum BDNF: a potential biomarker for major depressive disorder and antidepressant response prediction. J Depress Anxiety. 2015;4(2):179.Google Scholar
  68. Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF, Weinberger DR. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci. 2003;23(17):6690–4.PubMedCrossRefGoogle Scholar
  69. Hashimoto K. Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res Rev. 2009;61:105–23.PubMedCrossRefGoogle Scholar
  70. Hegerl U, Hensch T. The vigilance regulation model of affective disorders and ADHD. Neurosci Biobehav Res. 2014;44:45–57.CrossRefGoogle Scholar
  71. Hegerl U, Juckel G. Intensity dependence of auditory evoked-potentials as an indicator of central serotonergic neurotransmission—a new hypothesis. Biol Psychiatry. 1993;33(3):173–87.PubMedCrossRefGoogle Scholar
  72. Hegerl U, Wilk K, Olbrich S, Schoenknecht P, Sander C. Hyperstable regulation of vigilance in patients with major depressive disorder. World J Biol Psychiatry. 2012;13(6):436–46.PubMedCrossRefGoogle Scholar
  73. Heim C, Binder EB. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Exp Neurol. 2012;233(1):102–11.PubMedCrossRefGoogle Scholar
  74. Henriques JB, Davidson RJ. Left frontal hypoactivation in depression. J Abnorm Psychol. 1991;100(4):535–45.PubMedCrossRefGoogle Scholar
  75. Hosang GM, Shiles C, Tansey KE, McGuffin P, Uher R. Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis. BMC Med. 2014;12(1):7.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med. 2009;71(2):171–86.PubMedCrossRefGoogle Scholar
  77. Hrdina PD, Demeter E, Vu TB, Sótónyi P, Palkovits M. 5-HT uptake sites and 5-HT2 receptors in brain of antidepressant-free suicide victims/depressives: increase in 5-HT2 sites in cortex and amygdala. Brain Res. 1993;614:37–44.PubMedCrossRefGoogle Scholar
  78. Hughes JW, Watkins L, Blumenthal JA, Kuhn C, Sherwood A. Depression and anxiety symptoms are related to increased 24-hour urinary norepinephrine excretion among healthy middle-aged women. J Psychosom Res. 2004;57:353–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Iacob E, Tadler SC, Light KC, Weeks HR, Smith KW, White AT, Hughen RW, Van Haitsma TA, Bushnell LA, Light AR. Leukocyte gene expression in patients with medication refractory depression before and after treatment with ECT or isoflurane anesthesia: a pilot study. Depress Res Treat. 2014;2014:582380.PubMedPubMedCentralGoogle Scholar
  80. Jaworska N, Blier P, Fusee W, Knott V. Alpha power, alpha asymmetry and anterior cingulate cortex activity in depressed males and females. J Psychiatr Res. 2012a;46(11):1483–91.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Jaworska N, Blier P, Fusee W, Knott V. Scalp- and sLORETA-derived loudness dependence of auditory evoked potentials (LDAEPs) in un-medicated depressed males and females and healthy controls. Clin Neurophysiol. 2012b;123(9):1769–78.PubMedCrossRefGoogle Scholar
  82. Jeong HG, Ko YH, Han C, Kim YK, Joe SH. Distinguishing quantitative electroencephalogram findings between adjustment disorder and major depressive disorder. Psychiatry Invest. 2013;10(1):62–8.CrossRefGoogle Scholar
  83. Jessen F, Schuhmacher A, von Widdern O, Guttenthaler V, Hofels S, Suliman H, Scheef L, Block W, Urbach H, Maier W, Zobel A. No association of the Val66Met polymorphism of the brain-derived neurotrophic factor with hippocampal volume in major depression. Psychiatr Genet. 2009;19(2):99–101.PubMedCrossRefGoogle Scholar
  84. Kambeitz JP, Howes OD. The serotonin transporter in depression: meta-analysis of in vivo and post mortem findings and implications for understanding and treating depression. J Affect Disord. 2015;186:358–66.PubMedCrossRefGoogle Scholar
  85. Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. New York: McGraw-Hill; 2000.Google Scholar
  86. Kang H-J, Kim J-M, Lee J-Y, Kim S-Y, Bae K-Y, Kim S-W, Shin I-S, Kim H-R, Shin M-G, Yoon J-S. BDNF promoter methylation and suicidal behavior in depressive patients. J Affect Disord. 2013;151(2):679–85.PubMedCrossRefGoogle Scholar
  87. Karege F, Schwald M, Cisse M. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett. 2002;328(3):261–4.PubMedCrossRefGoogle Scholar
  88. Karege F, Vaudan G, Schwald M, Perroud N, La Harpe R. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res. 2005;136(1–2):29–37.PubMedCrossRefGoogle Scholar
  89. Kasa K, Otsuk S, Yamamoto M, Sato M, Kuroda H, Ogawa N. Cerebrospinal fluid gamma-aminobutyric acid and homovanillic acid in depressive disorders. Biol Psychiatry. 1982;17:877–83.PubMedGoogle Scholar
  90. Kaufman J, DeLorenzo C, Choudhury S, Parsey RV. The 5-HT1A receptor in major depressive disorder. Eur Neuropsychopharmacol. 2016;26(3):397–410.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Keller S, Sarchiapone M, Zarrilli F, Videtic A, Ferraro A, Carli V, Sacchetti S, Lembo F, Angiolillo A, Jovanovic N, Pisanti F, Tomaiuolo R, Monticelli A, Balazic J, Roy A, Marusic A, Cocozza S, Fusco A, Bruni CB, Castaldo G, Chiariotti L. Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Arch Gen Psychiatry. 2010;67(3):258–67.PubMedCrossRefGoogle Scholar
  92. Kendler KS. The phenomenology of major depression and the representativeness and nature of DSM criteria. Am J Psychiatry. 2016;173(8):771–80.PubMedCrossRefGoogle Scholar
  93. Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health. 2013;34:119–38.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kim J-M, Stewart R, Kang H-J, Kim S-Y, Kim S-W, Shin I-S, Park M-S, Kim H-R, Shin M-G, Cho K-H, Yoon J-S. A longitudinal study of BDNF promoter methylation and genotype with poststroke depression. J Affect Disord. 2013;149(1–3):93–9.PubMedCrossRefGoogle Scholar
  95. Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, Knudsen GM, Aznar S. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol. 2011;14(3):347–53.PubMedCrossRefGoogle Scholar
  96. Klimek V, Stockmeier C, Overholser J, Meltzer HY, Kalka S, Dilley G, Ordway G. A reduced levels of norepinephrine transporters in the locus coeruleus in major depression. J Neurosci. 1997;17:8451–8.PubMedCrossRefGoogle Scholar
  97. Klimke A, Larisch R, Janz A, Vosberg H, Müller-Gärtner H, Gaebel W. Dopamine D2 receptor binding before and after treatment of major depression measured by [123I]IBZM SPECT. Psychiatry Res Neuroimaging. 1999;90:91–101.CrossRefGoogle Scholar
  98. Knott V, Mahoney C, Kennedy S, Evans K. EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res Neuroimaging. 2001;106(2):123–40.CrossRefGoogle Scholar
  99. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455:894–902.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G, Epperson CN, Goddard A, Mason GF. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry. 2002;7(1):S71–80.PubMedCrossRefGoogle Scholar
  101. Kupfer DJ, Frank E, Phillips ML. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet. 2012;379(9820):1045–55.PubMedCrossRefGoogle Scholar
  102. Lang UE, Hellweg R, Gallinat J. BDNF serum concentrations in healthy volunteers are associated with depression-related personality traits. Neuropsychopharmacology. 2004;29(4):795–8.PubMedCrossRefGoogle Scholar
  103. Leake A, Fairbairn AF, McKeith IG, Ferrier IN. Studies on the serotonin uptake binding site in major depressive disorder and control post-mortem brain: neurochemical and clinical correlates. Psychiatry Res. 1991;39(2):155–65.PubMedCrossRefGoogle Scholar
  104. Lee HY, Kim YK. Plasma brain-derived neurotrophic factor as a peripheral marker for the action mechanism of antidepressants. Neuropsychobiology. 2008;57(4):194–9.PubMedCrossRefGoogle Scholar
  105. Lee BH, Kim YK. Reduced platelet BDNF level in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(5):849–53.PubMedCrossRefGoogle Scholar
  106. Lee BH, Kim YK. BDNF mRNA expression of peripheral blood mononuclear cells was decreased in depressive patients who had or had not recently attempted suicide. J Affect Disord. 2010;125(1–3):369–73.PubMedCrossRefGoogle Scholar
  107. Lee BH, Kim H, Park SH, Kim YK. Decreased plasma BDNF level in depressive patients. J Affect Disord. 2007;101(1–3):239–44.PubMedCrossRefGoogle Scholar
  108. Lee TW, Yu YWY, Chen MC, Chen TJ. Cortical mechanisms of the symptomatology in major depressive disorder: a resting EEG study. J Affect Disord. 2011;131(1–3):243–50.PubMedCrossRefGoogle Scholar
  109. Leuchter AF, Cook IA, Hunter AM, Cai CC, Horvath S. Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression. PLoS One. 2012;7(2):e32508.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Leuchter AF, Hunter AM, Krantz DE, Cook IA. Intermediate phenotypes and biomarkers of treatment outcome in major depressive disorder. Dialogues Clin Neurosci. 2014;16(4):525–37.PubMedPubMedCentralGoogle Scholar
  111. Li Y-J, Xu M, Gao Z-H, Wang Y-Q, Yue Z, Zhang Y-X, Li X-X, Zhang C, Xie S-Y, Wang P-Y. Alterations of serum levels of BDNF-related miRNAs in patients with depression. PLoS One. 2013;8(5):e63648.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Lidberg L, Belfrage H, Bertilsson L, Evenden MM, Asberg M. Suicide attempts and impulse control disorder are related to low cerebrospinal fluid 5-HIAA in mentally disordered violent offenders. Acta Psychiatr Scand. 2000;101(5):395–402.PubMedCrossRefGoogle Scholar
  113. Lima L, Mata S, Urbina M. Allelic isoforms and decrease in serotonin transporter mRNA in lymphocytes of patients with major depression. Neuroimmunomodulation. 2005;12(5):299–306.PubMedCrossRefGoogle Scholar
  114. Linka T, Sartory G, Bender S, Gastpar M, Muller BW. The intensity dependence of auditory ERP components in unmedicated patients with major depression and healthy controls. An analysis of group differences. J Affect Disord. 2007;103(1–3):139–45.PubMedCrossRefGoogle Scholar
  115. Lohoff FW. Overview of the genetics of major depressive disorder. Curr Psychiatry Rep. 2010;12(6):539–46.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Lopes MC, Quera-Salva MA, Guilleminault C. Non-REM sleep instability in patients with major depressive disorder: subjective improvement and improvement of non-REM sleep instability with treatment (Agomelatine). Sleep Med. 2007;9(1):33–41.PubMedCrossRefGoogle Scholar
  117. López León S, Croes EA, Sayed-Tabatabaei FA, Claes S, Broeckhoven CV, van Duijn CM. The dopamine D4 receptor gene 48-base-pair-repeat polymorphism and mood disorders: a meta-analysis. Biol Psychiatry. 2005;57:999–1003.PubMedCrossRefGoogle Scholar
  118. Lu J, Goula D, Sousa N, Almeida OFX. Ionotropic and metabotropic glutamate receptor mediation of glucocorticoid induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-D-aspartate receptors. Neuroscience. 2003;121:123–31.PubMedCrossRefGoogle Scholar
  119. Luck SJ. An introduction to the event-related potential technique. Cambridge: MIT Press; 2005.Google Scholar
  120. Luscher B, Shen Q, Sahir N. The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry. 2011;16:383–406.PubMedCrossRefGoogle Scholar
  121. Maes M. The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuroendocrinol Lett. 2008;29(3):287–91.PubMedGoogle Scholar
  122. Mann JJ, Arango V, Marzuk PM, Theccanat S, Reis DJ. Evidence for the 5-HT hypothesis of suicide. A review of post-mortem studies. Br J Psychiatry Suppl. 1989;8:7–14.CrossRefGoogle Scholar
  123. Matsubara S, Arora RC, Meltzer HY. Serotonergic measures in suicide brain: 5-HT1A binding sites in frontal cortex of suicide victims. J Neural Transm Gen Sect. 1991;85(3):181–94.PubMedCrossRefGoogle Scholar
  124. Matsumoto T, Rauskolb S, Polack M, Klose J, Kolbeck R, Korte M, Barde YA. Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nat Neurosci. 2008;11(2):131–3.PubMedCrossRefGoogle Scholar
  125. Maung HH. Diagnosis and causal explanation in psychiatry. Stud Hist Phil Biol Biomed Sci. 2016;60:15–24.CrossRefGoogle Scholar
  126. Menke A, Binder EB. Epigenetic alterations in depression and antidepressant treatment. Dialogues Clin Neurosci. 2014;16(3):395–404.PubMedPubMedCentralGoogle Scholar
  127. Meyer JH, Krüger S, Wilson AA, Christensen BK, Goulding VS, Schaffer A, Minifie C, Houle S, Hussey D, Kennedy SH. Lower dopamine transporter binding potential in striatum during depression. Neuroreport. 2001;12:4121–5.PubMedCrossRefGoogle Scholar
  128. Meyer JH, McNeely HE, Sagrati S, Boovariwala A, Martin K, Verhoeff NP, Wilson AA, Houle S. Elevated putamen D(2) receptor binding potential in major depression with motor retardation: an [11C]raclopride positron emission tomography study. Am J Psychiatry. 2006;163(9):1594–602.PubMedCrossRefGoogle Scholar
  129. Meyer JH, Wilson AA, Sagrati S, Miler L, Rusjan P, Bloomfield PM, Clark M, Sacher J, Voineskos AN, Houle S. Brain monoamine oxidase A binding in major depressive disorder: relationship to selective serotonin reuptake inhibitor treatment, recovery, and recurrence. Arch Gen Psychiatry. 2009;66(12):1304–12.PubMedCrossRefGoogle Scholar
  130. Montag C, Weber B, Fliessbach K, Elger C, Reuter M. The BDNF Val66Met polymorphism impacts parahippocampal and amygdala volume in healthy humans: incremental support for a genetic risk factor for depression. Psychol Med. 2009;39(11):1831–9.PubMedCrossRefGoogle Scholar
  131. Moret C, Briley M. The importance of norepinephrine in depression. Neuropsychiatr Dis Treat. 2011;7:9–13.PubMedPubMedCentralGoogle Scholar
  132. Mowla SJ, Farhadi HF, Pareek S, Atwal JK, Morris SJ, Seidah NG, Murphy RA. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem. 2001;276(16):12660–6.PubMedCrossRefGoogle Scholar
  133. Muck-Seler D, Pivac N, Sagud M, Jakovljevic M, Mihaljevic-Peles A. The effects of paroxetine and tianeptine on peripheral biochemical markers in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(7–8):1235–43.PubMedCrossRefGoogle Scholar
  134. Müller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry. 2007;12:988–1000.PubMedCrossRefGoogle Scholar
  135. Myslobodsky MS, Coppola R, Bar-Ziv J, Karson C, Daniel D, van Praag H, Weinberger DR. EEG asymmetries may be affected by cranial and brain parenchymal asymmetries. Brain Topogr. 1989;1(4):221–8.PubMedCrossRefGoogle Scholar
  136. Nestler EJ, Carlezon WA Jr. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006;59:1151–9.PubMedCrossRefGoogle Scholar
  137. Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol. 2011;9(4):530–52.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Noachtar S, Binnie C, Ebersole J, Mauguiere F, Sakamoto A, Westmoreland B. A glossary of terms most commonly used by clinical electroencephalographers and proposal for the report form for the EEG findings. In: Deuschl G, Eisen A, editors. Recommendations for the practice of clinical neurophysiology: guidelines of the IFCN. Amsterdam: Elsevier Science; 1999.Google Scholar
  139. O’Connor KP, Shaw JC, Ongley CO. The EEG and differential diagnosis in psychogeriatrics. Br J Psychiatry. 1979;135:156–62.PubMedCrossRefGoogle Scholar
  140. Ogłodek EA, Just MJ, Szromek AR, Araszkiewicz A. Melatonin and neurotrophins NT-3, BDNF, NGF in patients with varying levels of depression severity. Pharmacol Rep. 2016;68(5):945–51.PubMedCrossRefGoogle Scholar
  141. Olbrich S, Sander C, Minkwitz J, Chittka T, Mergl R, Hegerl U, Himmerich H. EEG vigilance regulation patterns and their discriminative power to separate patients with major depression from healthy controls. Neuropsychobiology. 2012;65(4):188–94.PubMedCrossRefGoogle Scholar
  142. Ordway GA, Schenk J, Stockmeier CA, May W, Klimek V. Elevated agonist binding to a2-adrenoceptors in the locus coeruleus in major depression. Biol Psychiatry. 2003;53:315–23.PubMedCrossRefGoogle Scholar
  143. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology. 1998;37(12):1553–61.PubMedCrossRefGoogle Scholar
  144. Papp M, Klimek V, Willner P. Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology. 1994;115:441–6.PubMedCrossRefGoogle Scholar
  145. Pehrson AL, Sanchez C. Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des Devel Ther. 2015;9:603–24.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Petty F, Kramer GL, Fulton M, Davis L, Rush AJ. Stability of plasma GABA at four-year follow-up in patients with primary unipolar depression. Biol Psychiatry. 1995;37:806–10.PubMedCrossRefGoogle Scholar
  147. Pivac N, Jakovljevic M, Muck-Seler D, Brzovic Z. Hypothalamic-pituitary-adrenal axis activity and platelet 5-HT concentrations in depressed patients. Psychiatry Res. 1997;73(3):123–32.PubMedCrossRefGoogle Scholar
  148. Polich J. Clinical application of the P300 event-related brain potential. Phys Med Rehabil Clin N Am. 2004;15(1):133–61.PubMedCrossRefGoogle Scholar
  149. Post RM, Ballenger JC, Hare TA, Goodwin FK, Lake CR, Jimerson DC, Bunney WE Jr. Cerebrospinal fluid GABA in normals and patients with affective disorders. Brain Res Bull. 1980;5(Suppl 2):755–9.CrossRefGoogle Scholar
  150. Prendes-Alvarez S, Nemeroff CB. Personalized medicine: prediction of disease vulnerability in mood disorders. Neurosci Lett. 2016.  https://doi.org/10.1016/j.neulet.2016.09.049.
  151. Price GW, Lee JW, Garvey C, Gibson N. Appraisal of sessional EEG features as a correlate of clinical changes in an rTMS treatment of depression. Clin EEG Neurosci. 2008;39(3):131–8.PubMedCrossRefGoogle Scholar
  152. Prichep LS, John ER. QEEG profiles of psychiatric disorders. Brain Topogr. 1992;4(4):249–57.PubMedCrossRefGoogle Scholar
  153. Quintana J. Platelet serotonin and plasma tryptophan decreases in endogenous depression. Clinical, therapeutic, and biological correlations. J Affect Disord. 1992;24(2):55–62.PubMedCrossRefGoogle Scholar
  154. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27(1):24–31.PubMedCrossRefGoogle Scholar
  155. Rantamaki T, Yalcin I. Antidepressant drug action—from rapid changes on network function to network rewiring. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:285–92.PubMedCrossRefGoogle Scholar
  156. Reddy PL, Khanna S, Subhash MN, Channabasavanna SM, Rao BS. CSF amine metabolites in depression. Biol Psychiatry. 1992;31(2):112–8.PubMedCrossRefGoogle Scholar
  157. Rocc P, De Leo C, Eva C, Marchiaro L, Milani AM, Musso R, Ravizza L, Zanalda E, Bogetto F. Decrease of the D4 dopamine receptor messenger RNA expression in lymphocytes from patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26:1155–60.PubMedCrossRefGoogle Scholar
  158. Rotenberg VS, Shamir E, Barak Y, Indursky P, Kayumov L, Mark M. REM sleep latency and wakefulness in the first sleep cycle as markers of major depression—a controlled study vs. schizophrenia and normal controls. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(6):1211–5.PubMedCrossRefGoogle Scholar
  159. Roy A, Pickar D, Linnoila M, Doran AR, Ninan P, Paul SM. Cerebrospinal fluid monoamine and monoamine metabolite concentrations in melancholia. Psychiatry Res. 1985;15(4):281–92.PubMedCrossRefGoogle Scholar
  160. Roy A, Dejong J, Ferraro T. CSF GABA in depressed patients and normal controls. Psychol Med. 1991;21:613–8.PubMedCrossRefGoogle Scholar
  161. Ruhé HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry. 2007;12:331–59.PubMedCrossRefGoogle Scholar
  162. Sagud M, Nikolac Perkovic M, Vuksan-Cusa B, Maravic A, Svob Strac D, Mihaljevic Peles A, Zivkovic M, Kusevic Z, Pivac N. A prospective, longitudinal study of platelet serotonin and plasma brain-derived neurotrophic factor concentrations in major depression: effects of vortioxetine treatment. Psychopharmacology. 2016;233(17):3259–67.PubMedCrossRefGoogle Scholar
  163. Sanacora G, Gueorguieva R, Epperson CN, Wu YT, Appel M, Rothman DL, Krystal JH, Mason GF. Subtype-specific alterations of γ-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry. 2004;61:705–13.PubMedCrossRefGoogle Scholar
  164. Sarchiapone M, Carli V, Roy A, Iacoviello L, Cuomo C, Latella MC, Di Giannantonio M, Janiri L, De Gaetano M, Janal MN. Association of polymorphism (Val66Met) of brain-derived neurotrophic factor with suicide attempts in depressed patients. Neuropsychobiology. 2008;57(3):139–45.PubMedCrossRefGoogle Scholar
  165. Savitz J, Lucki I, Drevets WC. 5-HT1A receptor function in major depressive disorder. Prog Neurobiol. 2009;88:17–31.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Schaffer CE, Davidson RJ, Saron C. Frontal and parietal electroencephalogram asymmetry in depressed and nondepressed subjects. Biol Psychiatry. 1983;18(7):753–62.PubMedGoogle Scholar
  167. Schneider B, Prvulovic D. Novel biomarkers in major depression. Curr Opin Psychiatry. 2013;26(1):47–53.PubMedCrossRefGoogle Scholar
  168. Smit DJA, Posthuma D, Boomsma DI, De Geus EJC. The relation between frontal EEG asymmetry and the risk for anxiety and depression. Biol Psychol. 2007;74(1):26–33.PubMedCrossRefGoogle Scholar
  169. Smith MA, Makino S, Kvetnansky R, Post RM. Effects of stress on neurotrophic factor expression in the rat brain. Ann N Y Acad Sci. 1995;771:234–9.PubMedCrossRefGoogle Scholar
  170. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. Organization, development and function of complex brain networks. Trends Cogn Sci. 2004;8(9):418–25.PubMedCrossRefGoogle Scholar
  171. Stetler C, Miller GE. Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decade research. Psychosom Med. 2011;73(2):114–26.PubMedCrossRefGoogle Scholar
  172. Sun Y, Li YJ, Zhu YS, Chen XS, Tong SB. Electroencephalographic differences between depressed and control subjects: an aspect of interdependence analysis. Brain Res Bull. 2008;76(6):559–64.PubMedCrossRefGoogle Scholar
  173. Suranyi-Cadotte BE, Gauthier S, Lafaille F, DeFlores S, Dam TV, Nair NP, Quirion R. Platelet 3H-imipramine binding distinguishes depression from Alzheimer dementia. Life Sci. 1985;37(24):2305–11.PubMedCrossRefGoogle Scholar
  174. Suzuki E, Yagi G, Nakaki T, Kanba S, Asai M. Elevated plasma nitrate levels in depressive states. J Affect Disord. 2001;63:221–4.PubMedCrossRefGoogle Scholar
  175. Swardfager W, Rosenblat JD, Benlamri M, McIntyr RS. Mapping inflammation onto mood: inflammatory mediators of anhedonia. Neurosci Biobehav Rev. 2016;64:148–66.PubMedCrossRefGoogle Scholar
  176. Tsao CW, Lin YS, Chen CC, Bai CH, Wu SR. Cytokines and serotonin transporter in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(5):899–905.PubMedCrossRefGoogle Scholar
  177. Tyrka AR, Price LH, Gelernter J, Schepker C, Anderson GM, Carpenter LL. Interaction of childhood maltreatment with the corticotropin-releasing hormone receptor gene: effects on hypothalamic–pituitary–adrenal axis reactivity. Biol Psychiatry. 2009;66(7):681–5.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Ueyama T, Kawai Y, Nemoto K, Sekimoto M, Tone S, Senba E. Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res. 1997;28(2):103–10.PubMedCrossRefGoogle Scholar
  179. Valdizán EM, Díez-Alarcia R, González-Maeso J, Pilar-Cuéllar F, García-Sevilla JA, Meana JJ, Pazos A. a2-Adrenoceptor functionality in postmortem frontal cortex of depressed suicide victims. Biol Psychiatry. 2010;68:869–72.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Vandoolaeghe E, van Hunsel F, Nuyten D, Maes M. Auditory event related potentials in major depression: prolonged P300 latency and increased P200 amplitude. J Affect Disord. 1998;48(2–3):105–13.PubMedCrossRefGoogle Scholar
  181. Wegener G, Harvey BH, Bonefeld B, Müller HK, Volke V, Overstreet DH, Elfving B. Increased stress-evoked nitric oxide signalling in the Flinders sensitive line (FSL) rat: a genetic animal model of depression. Int J Neuropsychopharmacol. 2010;13:461–73.PubMedCrossRefGoogle Scholar
  182. Xiang L, Szebeni K, Szebeni A, Klimek V, Stockmeier CA, Karolewicz B, Kalbfleisch J, Ordway GA. Dopamine receptor gene expression in human amygdaloid nuclei: elevated D4 receptor mRNA in major depression. Brain Res. 2008;1207:214–24.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Yadid G, Nakash R, Deri I, Tamar G, Kinor N, Gispan I, et al. Elucidation of the neurobiology of depression: insights from a novel genetic animal model. Prog Neurobiol. 2000;62:353–78.PubMedCrossRefGoogle Scholar
  184. Yang J, Siao CJ, Nagappan G, Marinic T, Jing D, Mcgrath K, Chen ZY, Mark W, Tessarollo L, Lee FS, Lu B, Hempstead BL. Neuronal release of proBDNF. Nat Neurosci. 2009;12(2):113–5.PubMedPubMedCentralCrossRefGoogle Scholar
  185. Yang X, Yang Q, Wang X, Luo C, Wan Y, Li J, Liu K, Zhou M, Zhang C. MicroRNA expression profile and functional analysis reveal that miR-206 is a critical novel gene for the expression of BDNF induced by ketamine. Neuromolecular Med. 2014;16:594–605.PubMedCrossRefGoogle Scholar
  186. Yoshida T, Ishikawa M, Niitsu T, Nakazato M, Watanabe H, Shiraishi T, Shiina A, Hashimoto T, Kanahara N, Hasegawa T, Enohara M, Kimura A, Iyo M, Hashimoto K. Decreased serum levels of mature brain-derived neurotrophic factor (BDNF), but not its precursor proBDNF, in patients with major depressive disorder. PLoS One. 2012;7(8):e42676.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Young JJ, Silber T, Bruno D, Galatzer-Levy IR, Pomara N, Marmar CR. Is there progress? An overview of selecting biomarker candidates for major depressive disorder. Front Psych. 2016;7:72.  https://doi.org/10.3389/fpsyt.2016.00072.CrossRefGoogle Scholar
  188. Zangen A, Overstreet DH, Yadid G. Increased catecholamine levels in specific brain regions of a rat model of depression: normalization by chronic antidepressant treatment. Brain Res. 1999;824:243–50.PubMedCrossRefGoogle Scholar
  189. Zarate CA Jr, Du J, Quiroz J, Gray NA, Denicoff KD, Singh J, Charney DS, Manji H. Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders: role of the glutamatergic system. Ann N Y Acad Sci. 2003;1003:273–91.PubMedCrossRefGoogle Scholar
  190. Zhang ZJ, Wang D, Man SC, Ng R, McAlonan GM, Wong HK, Wong W, Lee J, Tan QR. Platelet 5-HT(1A) receptor correlates with major depressive disorder in drug-free patients. Prog Neuropsychopharmacol Biol Psychiatry. 2014;53:74–9.PubMedCrossRefGoogle Scholar
  191. Zhou L, Xiong J, Lim Y, Ruan Y, Huang C, Zhu Y, Zhong JH, Xiao Z, Zhou XF. Upregulation of blood proBDNF and its receptors in major depression. J Affect Disord. 2013;150(3):776–84.PubMedCrossRefGoogle Scholar
  192. Zimmermann P, Pfister H, Lieb R, Wittchen HU, Holsboer F, Ising M, Binder EB, Uhr M, Nocon A. The interplay of variations in the FKBP5 gene and adverse life events in predicting the first onset of depression during a ten-year follow-up. Pharmacopsychiatry. 2009;42(5):249.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Matea Nikolac Perkovic
    • 1
  • Gordana Nedic Erjavec
    • 1
  • Dubravka Svob Strac
    • 1
  • Nela Pivac
    • 1
  1. 1.Laboratory for Molecular Neuropsychiatry, Division of Molecular MedicineRudjer Boskovic InstituteZagrebCroatia

Personalised recommendations