Advertisement

Online Detection of High-solid and Multi-phase Bioprocess Parameters

  • Hongzhang Chen
Chapter
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

Parameter monitoring is the key in high-solid and multi-phase bioprocess, which is also a core problem to be solved in its industrialization process. While solid-state substrate has the characteristics of heterogeneity, poor mobility, low moisture content, and parameters (temperature, moisture content, biomass) with large gradient, resulting in great difficulties for parameters monitoring and control in reaction process and proposing higher requirements for parameters monitoring and control. This chapter focuses on parameters monitoring and control in solid-state fermentation (SSF) and high-solid enzymatic hydrolysis of biomass, in order to obtain more important parameters, which could provide the guidance for optimizing and regulation of the high-solid and multi-phase bioprocess.

Keywords

Parameter detection Parameter control Solid-state fermentation 

References

  1. 1.
    Chen HZ (2013) Modern Solid State Fermentation. Springer, NetherlandsCrossRefGoogle Scholar
  2. 2.
    Duan YY, Wang L, Chen HZ (2012) Digital image analysis and fractal-based kinetic modelling for fungal biomass determination in solid-state fermentation. Biochem Eng J 67(1):60–67CrossRefGoogle Scholar
  3. 3.
    Jiang H, Liu GH, Mei CL et al (2012) Measurement of process variables in solid-state fermentation of wheat straw using FT-NIR spectroscopy and synergy interval PLS algorithm. Spectrochimica Acta Part a-Molecular Biomolecular Spectroscopy 97:277–283.  https://doi.org/10.1016/j.saa.2012.06.024CrossRefGoogle Scholar
  4. 4.
    Jiang H, Liu GH, Mei CL et al (2012) Rapid determination of pH in solid-state fermentation of wheat straw by FT-NIR spectroscopy and efficient wavelengths selection. Anal Bioanal Chem 404(2):603–611.  https://doi.org/10.1007/s00216-012-6128-yCrossRefPubMedGoogle Scholar
  5. 5.
    Jiang H, Liu GH, Xiao XH et al (2012) Monitoring of solid-state fermentation of wheat straw in a pilot scale using FT-NIR spectroscopy and support vector data description. Microchem J 102:68–74.  https://doi.org/10.1016/j.microc.2011.12.003CrossRefGoogle Scholar
  6. 6.
    Zhao JY, Chen HZ (2013) Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover. Chem Eng Sci 104:1036–1044CrossRefGoogle Scholar
  7. 7.
    He Q, Chen HZ (2015) Comparative study on occurrence characteristics of matrix water in static and gas double-dynamic solid-state fermentations using low-field NMR and MRI. Anal Bioanal Chem 407(30):9115–9123CrossRefPubMedGoogle Scholar
  8. 8.
    Nguyen TC, Anne-Archard D, Fillaudeau L (2015) Rheology of Lignocellulose Suspensions and Impact of Hydrolysis: A Review. Springer International PublishingGoogle Scholar
  9. 9.
    Wiman M, Palmqvist B, Tornberg E et al (2011) Rheological characterization of dilute acid pretreated softwood. Biotechnol Bioeng 108(5):1031–1041.  https://doi.org/10.1002/Bit.23020CrossRefPubMedGoogle Scholar
  10. 10.
    Um BH, Hanley TR (2008) A comparison of simple rheological parameters and simulation data for Zymomonas mobilis fermentation broths with high substrate loading in a 3-l bioreactor. Appl Biochem Biotechnol 145(1–3):29–38.  https://doi.org/10.1007/s12010-007-8105-zCrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Stickel JJ, Knutsen JS, Liberatore MW et al (2009) Rheology measurements of a biomass slurry: an inter-laboratory study. Rheologica Acta 48(9):1005–1015.  https://doi.org/10.1007/s00397-009-0382-8CrossRefGoogle Scholar
  12. 12.
    Shobha MS, Tharanathan RN (2009) Rheological behaviour of pullulanase-treated guar galactomannan on co-gelation with xanthan. Food Hydrocoll 23(3):749–754.  https://doi.org/10.1016/j.foodhyd.2008.04.006CrossRefGoogle Scholar
  13. 13.
    Lavenson DM, Tozzi EJ, McCarthy MJ et al (2011) Yield stress of pretreated corn stover suspensions using magnetic resonance imaging. Biotechnol Bioeng 108(10):2312–2319.  https://doi.org/10.1002/Bit.23197CrossRefPubMedGoogle Scholar
  14. 14.
    Dibble CJ, Shatova TA, Jorgenson JL et al (2011) Particle morphology characterization and manipulation in biomass slurries and the effect on rheological properties and enzymatic conversion. Biotechnol Prog 27(6):1751–1759.  https://doi.org/10.1002/Btpr.669CrossRefPubMedGoogle Scholar
  15. 15.
    Chen HZ, Zhao ZM, Li HQ (2014) The effect of gas double-dynamic on mass distribution in solid-state fermentation. Enzyme Microb Technol 58–59(9):14–21CrossRefPubMedGoogle Scholar
  16. 16.
    Li H, Chen HZ (2008) Near-infrared spectroscopy with a fiber-optic probe for state variables determination in solid-state fermentation. Process Biochem 43(5):511–516CrossRefGoogle Scholar
  17. 17.
    Lindahl S, Liu J, Khan S et al (2013) An on-line method for pressurized hot water extraction and enzymatic hydrolysis of quercetin glucosides from onions. Anal Chim Acta 785(12):50–59CrossRefPubMedGoogle Scholar
  18. 18.
    Petucci C, Li D, Mcconnell O (2007) Rapid screening of enzymes for the enzymatic hydrolysis of chiral esters in drug discovery. Chirality 19(9):701CrossRefPubMedGoogle Scholar
  19. 19.
    Cartz L (1995) Nondestructive testing. Society for Nondestructive TestingGoogle Scholar
  20. 20.
    Xia ML, Wang L, Yang ZX et al (2015) A novel digital color analysis method for rapid glucose detection. Anal Methods 7(16):6654–6663CrossRefGoogle Scholar
  21. 21.
    Zou BZ, Yue L, Yan XL et al (2013) Gold nanoparticles based digital color analysis for quinidine detection. Science Bull 58(17):2027–2032CrossRefGoogle Scholar
  22. 22.
    Hirayama E, Sugiyama T, Hisamoto H et al (2000) Visual and colorimetric lithium ion sensing based on digital color analysis. AnaCh 72(3):465–474Google Scholar
  23. 23.
    Cantrell K, Erenas MM, De OPI et al (2010) Use of the hue parameter of the hue, saturation, value color space as a quantitative analytical parameter for bitonal optical sensors. Anal Chem 82(2):531–542CrossRefPubMedGoogle Scholar
  24. 24.
    Rossel RAV, Minasny B, Roudier P et al (2006) Colour space models for soil science. Geoderma 133(3–4):320–337CrossRefGoogle Scholar
  25. 25.
    Ford A (1998) Colour Space Conversions. Westminster University, LondonGoogle Scholar
  26. 26.
    Vermeir S, Nicolaï BM, Jans K et al (2007) High-throughput microplate enzymatic assays for fast sugar and acid quantification in apple and tomato. J Agric Food Chem 55(9):3240–3248CrossRefPubMedGoogle Scholar
  27. 27.
    Laidler KJ (1984) The development of the Arrhenius equation. J Chem Education 61(6):494CrossRefGoogle Scholar
  28. 28.
    Raja AS, Sankaranarayanan K (2012) Digital image processing technique for blood glucose measurement. Res J Med SciGoogle Scholar
  29. 29.
    Tan J, Chu J, Wang Y et al (2014) High-throughput system for screening of Monascus purpureus high-yield strain in pigment production. Bioresources Bioprocess 1(1):1–7CrossRefGoogle Scholar
  30. 30.
    Wang L, Xia ML, Zhang L et al (2014) Promotion of the Clostridium acetobutylicum ATCC 824 growth and acetone-butanol-ethanol fermentation by flavonoids. World J Microbiol Biotechnol 30(7):1969–1976CrossRefPubMedGoogle Scholar
  31. 31.
    Wang L, Chen HZ (2011) Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochem 46(2):604–607CrossRefGoogle Scholar
  32. 32.
    Li C, Luo W, Xu H et al (2013) Development of an immunochromatographic assay for rapid and quantitative detection of clenbuterol in swine urine. Food Control 34(2):725–732CrossRefGoogle Scholar
  33. 33.
    Eerikäinen T, Zhu YH, Linko P (1994) Neural networks in extrusion process identification and control. Food Control 5(2):111–119CrossRefGoogle Scholar
  34. 34.
    Kiviharju K, Salonen K, Leisola M et al (2006) Modeling and simulation of Streptomyces peucetius var. caesius N47 cultivation and epsilon-rhodomycinone production with kinetic equations and neural networks. J Biotechnol 126(3):365–373CrossRefPubMedGoogle Scholar
  35. 35.
    Unnikrishnan B, Palanisamy S, Chen SM (2013) A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite. Biosens Bioelectron 39(1):70–75CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jang HD, Kim SK, Chang H et al (2012) A glucose biosensor based on TiO 2–graphene composite. Biosens Bioelectron 38(1):184–188CrossRefPubMedGoogle Scholar
  37. 37.
    Sun X, Wang J, Wei A (2008) Zinc oxide nanostructured biosensor for glucose detection. J Mater Sci Technol 24(4):649–656Google Scholar
  38. 38.
    Park S, Chung TD, Kim HC (2003) Nonenzymatic glucose detection using mesoporous platinum. Anal Chem 75(13):3046–3049CrossRefPubMedGoogle Scholar
  39. 39.
    Tian H, Jia M, Zhang M et al (2013) Nonenzymatic glucose sensor based on nickel ion implanted-modified indium tin oxide electrode. Electrochim Acta 96:285–290CrossRefGoogle Scholar
  40. 40.
    Zhang Y, Xu F, Sun Y et al (2011) Assembly of Ni (OH)2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing. J Mater Chem 21(42):16949–16954CrossRefGoogle Scholar
  41. 41.
    Lyandres O, Yuen JM, Shah NC et al (2008) Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor. Diabetes technology and therapeutics 10(4):257–265CrossRefPubMedGoogle Scholar
  42. 42.
    Stuart DA, Yonzon CR, Zhang X et al (2005) Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy. Anal Chem 77(13):4013–4019CrossRefPubMedGoogle Scholar
  43. 43.
    Rodriguez CS, Sanroman MA (2006) Application of solid-state fermentation to food industry–a review. J Food Eng 76(3):291–302CrossRefGoogle Scholar
  44. 44.
    He Q, Chen HZ (2013) Pilot-scale gas double-dynamic solid-state fermentation for the production of industrial enzymes. Food Bioprocess Technol 6(10):2916–2924CrossRefGoogle Scholar
  45. 45.
    Pandey A (2003) Solid-state fermentation. Biochem Eng J 13(2–3):81–84CrossRefGoogle Scholar
  46. 46.
    Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64(2):175–186CrossRefGoogle Scholar
  47. 47.
    Gowthaman MK, Ghildyal NP, Rao KS et al (1993) Interaction of transport resistances with biochemical reaction in packed bed solid state fermenters: the effect of gaseous concentration gradients. J Chem Technol Biotechnol 56(3):233–239CrossRefPubMedGoogle Scholar
  48. 48.
    Hamidi-Esfahani Z, Shojaosadati SA, Rinzema A (2004) Modelling of simultaneous effect of moisture and temperature on A. Niger growth in solid-state fermentation. Biochem Eng J 21(3):265–272CrossRefGoogle Scholar
  49. 49.
    Nagel FJ, Van AH, Tramper J et al (2002) Water and glucose gradients in the substrate measured with NMR imaging during solid-state fermentation with Aspergillus oryzae. Biotechnol Bioeng 79(6):653–663CrossRefPubMedGoogle Scholar
  50. 50.
    Raghavarao KSMS, Ranganathan TV, Karanth NG (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13(2–3):127–135CrossRefGoogle Scholar
  51. 51.
    Mitchell DA, Krieger N, Stuart DM et al (2000) New developments in solid-state fermentation: II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem 35(47):1211–1225CrossRefGoogle Scholar
  52. 52.
    Chen HZ, Qiu WH, Liu SJ et al (2010) Key technologies for bioethanol production from lignocellulose. Biotechnol Adv 28(5):556–562CrossRefPubMedGoogle Scholar
  53. 53.
    Krishna C (2005) Solid-state fermentation systems-an overview. Crit Rev Biotechnol 25(1–2):1–30CrossRefPubMedGoogle Scholar
  54. 54.
    Chen HZ, Jian X, Li ZH (2005) Temperature control at different bed depths in a novel solid-state fermentation system with two dynamic changes of air. Biochem Eng J 23(2):117–122CrossRefGoogle Scholar
  55. 55.
    Chen HZ, Li ZH (2007) Gas double-dynamic solid state fermentation technique and apparatus. U.S. Patent 7183074 B2Google Scholar
  56. 56.
    Chen HZ, He Q (2012) Value-added bioconversion of biomass by solid-state fermentation. J Chem Technol Biotechnol 87(12):1619–1625CrossRefGoogle Scholar
  57. 57.
    Xu FJ, Chen HZ, Li ZH (2002) Effect of periodically dynamic changes of air on cellulase production in solid-state fermentation. Enzyme Microb Technol 30(1):45–48CrossRefGoogle Scholar
  58. 58.
    Bellon-Maurel V, Orliac O, Christen P (2003) Sensors and measurements in solid state fermentation: a review. Process Biochem 38(6):881–896CrossRefGoogle Scholar
  59. 59.
    Cen H, He Y (2007) Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci Technol 18(2):72–83CrossRefGoogle Scholar
  60. 60.
    Roggo Y, Chalus P, Maurer L et al (2007) A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal 44(3):683–700CrossRefPubMedGoogle Scholar
  61. 61.
    Jin SY, Chen HZ (2007) Near-infrared analysis of the chemical composition of rice straw. Ind Crops Prod 26(2):207–211CrossRefGoogle Scholar
  62. 62.
    Liu LY, Chen HZ (2007) Prediction of maize stover components with near infrared reflectance spectroscopy. Spectroscopy Spectral Anal 27(2):275–278Google Scholar
  63. 63.
    And SEK, Ii FEB (2002) Near-Infrared analysis of soluble and insoluble dietary fiber fractions of cereal food products. J Agric Food Chem 50(10):3024–3029CrossRefGoogle Scholar
  64. 64.
    Bruno-Soares AM, Murray I, Paterson RM et al (1998) Use of near infrared reflectance spectroscopy (NIRS) for the prediction of the chemical composition and nutritional attributes of green crop cereals. Anim Feed Sci Technol 75(1):15–25CrossRefGoogle Scholar
  65. 65.
    Shen H, Chen J (2003) Study on the application of near infrared reflectance spectroscopy (NIRS) technique for the prediction of fiber composition and silicification of rice straw. Sci Agric SinGoogle Scholar
  66. 66.
    Sakurai Y, Lee TH, Shiota H (1977) On the convenient method for glucosamine estimation in koji. Agric Biol Chem 41(4):619–624Google Scholar
  67. 67.
    IUPAC (2014) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268Google Scholar
  68. 68.
    Edwards PM (2002) Origin 7.0: scientific graphing and data analysis software. J Chem Inf Model 42(5):1270–1271Google Scholar
  69. 69.
    Gervais P, Molin P (2003) The role of water in solid-state fermentation. Biochem Eng J 13(2–3):85–101CrossRefGoogle Scholar
  70. 70.
    Liu J, Li DB, Yang JC (2007) Operating characteristics of solid-state fermentation bioreactor with air pressure pulsation. Appl Biochem Microbiol 43(2):234–239CrossRefGoogle Scholar
  71. 71.
    Sheu WJ, Liou NC (1999) Effect of temporal variation of pressure on vaporization of liquid droplets. Int J Heat Mass Transf 42(21):4043–4054CrossRefGoogle Scholar
  72. 72.
    Doran G, Zander A (2012) An improved method for measuring soil microbial activity by gas phase flow injection analysis. Revista Brasileira De Ciência Do Solo 36(2):349–357CrossRefGoogle Scholar
  73. 73.
    Chen HZ, Shao MX, Li HQ (2013) Effects of gas periodic stimulation on key enzyme activity in gas double-dynamic solid state fermentation (GDD-SSF). Enzyme Microb Technol 56(6):35–39PubMedGoogle Scholar
  74. 74.
    Elmore JM, Coaker G (2011) The role of the plasma membrane H+ -ATPase in plant-microbe interactions. Mol Plant 4(3):416–427CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Physiology 67(67):225–257CrossRefGoogle Scholar
  76. 76.
    Serrano R (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. ACBB 947(1):1–28Google Scholar
  77. 77.
    Spano G, Massa S (2006) Environmental Stress Response in Wine Lactic Acid Bacteria: Beyond Bacillus subtilis. Crit Rev Microbiol 32(2):77–86CrossRefPubMedGoogle Scholar
  78. 78.
    Singhania RR, Patel AK, Soccol CR et al (2008) Recent advances in solid-state fermentation. Biochem Eng J 44(1):13–18CrossRefGoogle Scholar
  79. 79.
    Koliander B, Hampel W, Roehr M (1984) Indirect estimation of biomass by rapid ribonucleic acid determination. Appl Microbiol Biotechnol 19(4):272–276CrossRefGoogle Scholar
  80. 80.
    Matcham SE, Jordan BR, Wood DA (1985) Estimation of fungal biomass in a solid substrate by three independent methods. Appl Microbiol Biotechnol 21(1):108–112Google Scholar
  81. 81.
    Sharma PD, Fisher PJ, Webster J (1977) Critique of the chitin assay technique for estimation of fungal biomass. Trans Br Mycol Soc 69(69):479–483CrossRefGoogle Scholar
  82. 82.
    Barak R, Chet I (1986) Determination, by fluorescein diacetate staining, of fungal viability during mycoparasitism. Soil Biol Biochem 18(3):315–319CrossRefGoogle Scholar
  83. 83.
    Bengtsson G, Rundgren S (1983) Respiration and growth of a fungus, Mortierella isabellina, in response to grazing by Onychiurus armatus (Collembola). Soil Biol Biochem 15(4):469–473CrossRefGoogle Scholar
  84. 84.
    Brezonik PL, Browne FX, Fox JL (1975) Application of ATP to plankton biomass and bioassay studies. Water Res 9(2):155–162CrossRefGoogle Scholar
  85. 85.
    Frankland JC, Bailey AD, Gray TRG et al (1981) Development of an immunological technique for estimating mycelial biomass of Mycena galopus in leaf litter. Soil Biol Biochem 13(2):87–92CrossRefGoogle Scholar
  86. 86.
    Nopharatana M, Howes T, Mitchell D (1998) Modelling fungal growth on surfaces. Biotechnol Tech 12(4):313–318CrossRefGoogle Scholar
  87. 87.
    Richard A, Sergio H, Maurice R et al (1990) Ion exchange resin: a model support for solid state growth fermentation of Aspergillus niger. Biotechnol Tech 4(6):391–396CrossRefGoogle Scholar
  88. 88.
    Abd-Aziz S, Gan SH, Hassan MA et al (2008) Indirect Method for Quantification of Cell Biomass During Solid-State Fermentation of Palm Kernel Cake Based on Protein Content. Asian J Sci Res 1(4)CrossRefGoogle Scholar
  89. 89.
    Terebiznik MR, Pilosof AMR (1999) Biomass estimation in solid state fermentation by modeling dry matter weight loss. Biotechnol Tech 13(3):215–219CrossRefGoogle Scholar
  90. 90.
    Crawford JW, Ritz K, Young IM (1993) Quantification of fungal morphology, gaseous transport and microbial dynamics in soil: an integrated framework utilising fractal geometry. Geoderma 56(1–4):157–172CrossRefGoogle Scholar
  91. 91.
    Marín S, Cuevas D, Ramos AJ et al (2008) Fitting of colony diameter and ergosterol as indicators of food borne mould growth to known growth models in solid medium. Int J Food Microbiol 121(2):139–149CrossRefPubMedGoogle Scholar
  92. 92.
    Camacho DBH, Jiménez AA, Chanonapérez JJ et al (2011) Morphological characterization of the growing front of Rhizopus oligosporus in solid media. J Food Eng 101(3):309–317Google Scholar
  93. 93.
    Donnelly DP, Boddy L, Leake JR (2004) Development, persistence and regeneration of foraging ectomycorrhizal mycelial systems in soil microcosms. Mycorrhiza 14(1):37–45CrossRefPubMedGoogle Scholar
  94. 94.
    Juge C, Champagne A, Coughlan AP et al (2009) Quantifying the growth of arbuscular mycorrhizal fungi: usefulness of the fractal dimension. Botany-botanique 87(4):387–400(314)CrossRefGoogle Scholar
  95. 95.
    Arelli A, Luccarini L, Madoni P (2009) Application of image analysis in activated sludge to evaluate correlations between settleability and features of flocs and filamentous species. Water Sci Technol A J Int Association Water Pollut Res 59(10):2029–2036CrossRefGoogle Scholar
  96. 96.
    Perez Leite YG, Coelho SGF et al (2006) Activated sludge morphology characterization through an image analysis procedure. Braz J Chem Eng 23(3):319–330CrossRefGoogle Scholar
  97. 97.
    Amaral AL, Ferreira EC (2005) Activated sludge monitoring of a wastewater treatment plant using image analysis and partial least squares regression. Anal Chim Acta 544(1):246–253CrossRefGoogle Scholar
  98. 98.
    Smets I, Banadda E, Deurinck J et al (2006) Dynamic modeling of filamentous bulking in lab-scale activated sludge processes. J Process Control 16(3):313–319CrossRefGoogle Scholar
  99. 99.
    Meskauskas A, Mcnulty LJ, Moore D (2004) Concerted regulation of all hyphal tips generates fungal fruit body structures: experiments with computer visualizations produced by a new mathematical model of hyphal growth. Mycol Res 108(4):341–353CrossRefPubMedGoogle Scholar
  100. 100.
    Boswell GP, Jacobs H, Ritz K et al (2007) The development of fungal networks in complex environments. Bull Math Biology 69(2):605–634CrossRefGoogle Scholar
  101. 101.
    Rahardjo YS, Tramper J, Rinzema A (2006) Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol Adv 24(2):161–179CrossRefPubMedGoogle Scholar
  102. 102.
    Mitchell DA, Meien OFV, Krieger N et al (2004) A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. ChemInform 17(27):15–26Google Scholar
  103. 103.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybernetics 9(1):62–66CrossRefGoogle Scholar
  104. 104.
    Theiler J (1990) Estimating fractal dimension. J Optical Soc Am A 7(6):1055–1073CrossRefGoogle Scholar
  105. 105.
    Schack KH, Wilpert KV, Hildebrand EE (2000) The spatial distribution of soil hyphae in structured spruce-forest soils. Plant Soil 224(2):195–205CrossRefGoogle Scholar
  106. 106.
    Viccini G, Mitchell DA, Boit SD et al (2001) Analysis of growth kinetic profiles in solid-state fermentation. Food Technol Biotechnol 39(4):271–294Google Scholar
  107. 107.
    Sun T, Li P, Liu B et al (1997) Solid state fermentation of rice chaff for fibrinolytic enzyme production by Fusarium oxysporum. Biotechnol Lett 19(5):465–467CrossRefGoogle Scholar
  108. 108.
    Laukevics JJ, Apsite AF, Viesturs US et al (1985) Steric hindrance of growth of filamentous fungi in solid substrate fermentation of wheat straw. Biotechnol Bioeng 27(12):1687–1691CrossRefPubMedGoogle Scholar
  109. 109.
    Blackledge J, Barry D (2011) Morphological analysis from images of hyphal growth using a fractional dynamic model. Theory & Practice of Computer Graphics, Warwick, United KingdomGoogle Scholar
  110. 110.
    Boswell GP, Hopkins S (2008) Linking hyphal growth to colony dynamics: spatially explicit models of mycelia. Fungal Ecol 1(4):143–154CrossRefGoogle Scholar
  111. 111.
    Boswell GP (2008) Modelling mycelial networks in structured environments. Mycol Res 112(Pt 9):1015–1025CrossRefPubMedGoogle Scholar
  112. 112.
    Feng XM, Olsson J, Swanberg M et al (2007) Image analysis for monitoring the barley tempeh fermentation process. J Appl Microbiol 103(4):1113–1121CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations