Advertisement

Microbe and Multienzyme Systems of High-solid and Multi-phase Bioreaction

  • Hongzhang Chen
Chapter
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

Biocatalysts (microbe and enzymes) are sensitive to environmental factors. In high-solid and multi-phase bioprocess system, high-solid loading leads to special colony structure and “microbial ecosystems”. It is necessary to screen microorganisms and enzymes which have high osmotic tolerance and substrate-capturing ability. In this chapter, based on feature of high-solid and multi-phase process, suitable screening principles and methods of microorganisms and enzymes are discussed. Clostridium acetobutylicum with high butanol productivity is taken as an example to carry out the engineering practice of rational selection of strains and construct the domestication microbial system and enzyme catalysis systems.

Keywords

Strain breeding Microbial ecosystems Heterogeneous enzyme catalytic system 

References

  1. 1.
    Xue C, Zhao XQ, Liu CG et al (2013) Prospective and development of butanol as an advanced biofuel. Biotech Adv. 31(8):1575–1584CrossRefGoogle Scholar
  2. 2.
    Qureshi N, Blaschek H (2000) Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation. In: Twenty-first symposium on biotechnology for fuels and chemicals. Humana Press, Colorado, pp 225–235CrossRefGoogle Scholar
  3. 3.
    Jang YS, Malaviya A, Lee SY (2013) Acetone–butanol–ethanol production with high productivity using Clostridium acetobutylicum BKM19. Biotech Bioeng 110(6):1646–1653CrossRefGoogle Scholar
  4. 4.
    Bowring SN, Morris J (1985) Mutagenesis of Clostridium acetobutylicum. J Appl Microbiol 58(6):577–584Google Scholar
  5. 5.
    Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microb 73(9):3061–3068CrossRefGoogle Scholar
  6. 6.
    Glass JI, Alperovich N, Assad-Garcia N et al (2005) Estimation of the minimal Mycoplasma Gene set using global transposon mutagenesis and comparative genomics. In: Genomes to life contractor-grantee workshop III, February 6–9Google Scholar
  7. 7.
    Robey-Bond SM, Barrantes-Reynolds R, Bond JP et al (2008) Clostridium acetobutylicum 8-Oxoguanine DNA Glycosylase (Ogg) differs from Eukaryotic Oggs with respect to opposite base discrimination. Biochemistry-us 47(29):7626–7636CrossRefGoogle Scholar
  8. 8.
    Allcock ER, Reid SJ, Jones DT et al (1981) Autolytic activity and an autolysis-deficient mutant of Clostridium acetobutylicum. Appl Environ Microb 42(6):929–935Google Scholar
  9. 9.
    Dreyfus-Fourcade M, Sebald M, Zavadova M (1972) Restriction and modification of phage r by Clostridium perfringens NCTC 8798 and its mutants. Ann Inst Pasteur 122:1117–1127Google Scholar
  10. 10.
    Liu XB, Gu QY, Yu XB (2013) Repetitive domestication to enhance butanol tolerance and production in Clostridium acetobutylicum through artificial simulation of bio-evolution. Bioresource Technol 130:638–643CrossRefGoogle Scholar
  11. 11.
    Xue C, Zhao J, Lu C et al (2012) High-titer n-butanol production by clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping. Biotechnol Bioeng 109(11):2746–2756CrossRefPubMedGoogle Scholar
  12. 12.
    Lau MW, Dale BE, Balan V (2008) Ethanolic fermentation of hydrolysates from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation. Biotechnol Bioeng 99(3):529–539CrossRefPubMedGoogle Scholar
  13. 13.
    Tian S, Zhu J, Yang X (2011) Evaluation of an adapted inhibitor-tolerant yeast strain for ethanol production from combined hydrolysate of softwood. Appl Energ 88(5):1792–1796CrossRefGoogle Scholar
  14. 14.
    Ding MZ, Zhou X, Yuan YJ (2010) Metabolome profiling reveals adaptive evolution of Saccharomyces cerevisiae during repeated vacuum fermentations. Metabolomics 6(1):42–55CrossRefGoogle Scholar
  15. 15.
    Wallace-Salinas V, Gorwa-Grauslund MF (2013) Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol Biofuels 6(1):151CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fan C, Qi K, Xia XX et al (2013) Efficient ethanol production from corncob residues by repeated fermentation of an adapted yeast. Bioresource Technol 136:309–315CrossRefGoogle Scholar
  17. 17.
    Xia ML (2016) Digital image analysis for rapid detection and fermentation process intensification by periodic-peristole agitation. Graduate University of the Chinese Academy of Sciences (Institute of Process Engineering)Google Scholar
  18. 18.
    Jiang Y, Xu C, Dong F et al (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11(4–5):284–291CrossRefPubMedGoogle Scholar
  19. 19.
    Harris LM, Desai RP, Welker NE et al (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 67(1):1–11CrossRefPubMedGoogle Scholar
  20. 20.
    Jang YS, Lee J Y, Lee J et al (2012) Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. MBio, 3(5):e00314–12CrossRefGoogle Scholar
  21. 21.
    Ou J, Ma C, Xu N et al (2015) High butanol production by regulating carbon, redox and energy in Clostridia. Front Chem Sci Eng 9(3):317–323CrossRefGoogle Scholar
  22. 22.
    Harris L, Blank L, Desai R et al (2001) Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbio Biot 27(5):322–328CrossRefGoogle Scholar
  23. 23.
    Tummala SB, Welker NE, Papoutsakis ET (2003) Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. J Bacteriol 185(6):1923–1934CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sillers R, Al-Hinai MA, Papoutsakis ET (2009) Aldehyde–alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol Bioeng 102(1):38–49CrossRefPubMedGoogle Scholar
  25. 25.
    Mahesh S, Jayas D, Paliwal J et al (2015) Comparison of partial least squares regression (PLSR) and principal components regression (PCR) methods for protein and hardness predictions using the near-infrared (NIR) hyperspectral images of bulk samples of Canadian wheat. Food Bioprocess Tech 8(1):31–40CrossRefGoogle Scholar
  26. 26.
    Elshikh M, Ahmed S, Funston S et al (2016) Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett 38(6):1015–1019CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Liu C-G, Xue C, Lin Y-H et al (2013) Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnol Adv 31(2):257–265CrossRefPubMedGoogle Scholar
  28. 28.
    Huang H, Liu H, Gan Y-R (2010) Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv 28(5):651–657CrossRefPubMedGoogle Scholar
  29. 29.
    Grimmler C, Janssen H, Krausse D et al (2011) Genome-Wide Gene Expression Analysis of the Switch between Acidogenesis and Solventogenesis in Continuous Cultures of Clostridium acetobutylicum. J Mol Microb Biotech 20(1):1–15CrossRefGoogle Scholar
  30. 30.
    Grupe H, Gottschalk G (1992) Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Appl Environ Microb 58(12):3896–3902Google Scholar
  31. 31.
    Lee J, Yun H, Feist AM et al (2008) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biot 80(5):849–862CrossRefGoogle Scholar
  32. 32.
    Alsaker KV, Paredes C, Papoutsakis ET (2010) Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng 105(6):1131–1147PubMedGoogle Scholar
  33. 33.
    Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotech 22(5):634–647CrossRefPubMedGoogle Scholar
  34. 34.
    MlL Xia, Wang L, Yang ZX et al (2015) Periodic-peristole agitation for process enhancement of butanol fermentation. Biotechnol Biofuels 8(1):1CrossRefGoogle Scholar
  35. 35.
    Maddox IS, Steiner E, Hirsch S et al (2000) The cause of “acid crash” and “acidogenic fermentations” duping the batch acetone-butanol-ethanol (ABE) fermentation process. J Mol Microb Biotech 2(1):95–100Google Scholar
  36. 36.
    Liu H, Huang D, Wen J (2016) Integrated intracellular metabolic profiling and pathway analysis approaches reveal complex metabolic regulation by Clostridium acetobutylicum. Microb Cell Fact 15(1):1CrossRefGoogle Scholar
  37. 37.
    Ozyurek D, Kalyon A, Yildirim M et al (2014) Experimental investigation and prediction of wear properties of Al/SiC metal matrix composites produced by thixomoulding method using Artificial Neural Networks. Mater Design 63:270–277CrossRefGoogle Scholar
  38. 38.
    Mikulandric R, Loncar D, Boehning D et al (2014) Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers. Energ Convers Manage 87:1210–1223CrossRefGoogle Scholar
  39. 39.
    Hore S, Bhattacharya T, Dey Net al (2016) A real time dactylology based feature extractrion for selective image encryption and artificial neural network. In: Image feature detectors and descriptors. Springer International Publishing, pp 203–226CrossRefGoogle Scholar
  40. 40.
    Wang SC (2003) Artificial neural network. In: Interdisciplinary Computing in Java Programming. Springer, US, pp 81–100CrossRefGoogle Scholar
  41. 41.
    Thompson KV, Chmielewski J, Gaines MS et al (2013) Competency-based reforms of the undergraduate biology curriculum: integrating the physical and biological sciences. Cbe-Life Sci Edu 12(2):162–169CrossRefGoogle Scholar
  42. 42.
    Vale RD, DeRisi J, Phillips R et al (2012) Interdisciplinary Graduate Training in Teaching labs. Science 338(6114):1542–1543CrossRefPubMedGoogle Scholar
  43. 43.
    Bialek W, Botstein D (2004) Introductory science and mathematics education for 21st-century biologists. Science 303(5659):788–790CrossRefPubMedGoogle Scholar
  44. 44.
    Jin XQ, Zhou H, Wu XM et al (2008) A rapid screening method of producing strain in acetone-butanol fermentation. Chin J Process Eng 6:1185–1189Google Scholar
  45. 45.
    Strategy AE (1998) Design by directed evolution. Acc Chem Res 31(3):125–131CrossRefGoogle Scholar
  46. 46.
    Fu AY, Chou HP, Spence C et al (2002) An integrated microfabricated cell sorter. Anal Chem 74(11):2451–2457CrossRefPubMedGoogle Scholar
  47. 47.
    Arnold FH, Moore JC (1997) Optimizing industrial enzymes by directed evolution. In: New enzymes for organic synthesis. Springer, Berlin, pp 1–14Google Scholar
  48. 48.
    Arnold F (1998) In IBC directed enzyme evolution. San Diego CAGoogle Scholar
  49. 49.
    Zhang JH, Dawes G, Stemmer WP (1997) Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc Natl Acad Sci 94(9):4504–4509CrossRefPubMedGoogle Scholar
  50. 50.
    Chen K, Arnold FH (1993) Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci 90(12):5618–5622CrossRefPubMedGoogle Scholar
  51. 51.
    Zhao H, Arnold FH (1997) Combinatorial protein design: strategies for screening protein libraries. Curr Opin Struc Biol 7(4):480–485CrossRefGoogle Scholar
  52. 52.
    Chen K, Arnold FH (1991) Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media. Nat Biotechnol 9(11):1073–1077CrossRefGoogle Scholar
  53. 53.
    Cadwell RC, Joyce GF (1992) Randomization of genes by PCR mutagenesis. Genome Res 2(1):28–33CrossRefGoogle Scholar
  54. 54.
    Wu WT (2004) Protein engineering technology and design of novel biocatalysts. Pharm Biotechno 11(1):1–6Google Scholar
  55. 55.
    Kikuchi M, Ohnishi K, Harayama S (2000) An effective family shuffling method using single-stranded DNA. Gene 243(1):133–137CrossRefPubMedGoogle Scholar
  56. 56.
    Crameri A, Raillard SA, Bermudez E (1998) DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391(6664):288–291CrossRefPubMedGoogle Scholar
  57. 57.
    Kikuchi M, Ohnishi K, Harayama S (1999) Novel family shuffling methods for the in vitro evolution of enzymes. Gene 236(1):159–167CrossRefPubMedGoogle Scholar
  58. 58.
    You C, Chen H, Myung S et al (2013) Enzymatic transformation of nonfood biomass to starch. P Natl Acad Sci USA 110(18):7182–7187CrossRefGoogle Scholar
  59. 59.
    Wang J, Chen X, Zhu H et al (2003) Relationship between aging and renal high-affinity sodium-dependent dicarboxylate cotransporter-3 expression characterized with antifusion protein antibody. J Gerontol A-Biol 58(10):B879–B888CrossRefGoogle Scholar
  60. 60.
    Dueber JE, Wu GC, Malmirchegini GR et al (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27(8):753–759CrossRefGoogle Scholar
  61. 61.
    Jandt U, You C, Zhang YP et al (2013) Compartmentalization and metabolic channeling for multienzymatic biosynthesis: practical strategies and modeling approaches. In: Fundamentals and application of new bioproduction systems. Springer, Berlin, pp 41–65CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations