Advertisement

Scanning Near-Field Optical Microscopy/Near-Field Scanning Optical Microscopy

  • Tetsuya NarushimaEmail author
Chapter

Abstract

Scanning near-field optical microscopy (SNOM)/near-field scanning optical microscopy (NSOM) is one of the scanning probe microscopies, especially for investigation of optical properties and phenomena in nanometer scale. SNOM/NSOM observation provides high spatial resolution of 10–100 nm that conventional optical microscopes do not achieve, in principle.

Keywords

Optical near-field Nanoscopy Imaging Scanning probe microscopy 

References

  1. 1.
    Saiki, T., Matsuda, K.: Near-field optical fiber probe optimized for illuminationcollection hybrid mode operation. Appl. Phys. Lett. 74, 2773–2775 (1999)CrossRefGoogle Scholar
  2. 2.
    Novotny, L., Hecht, B.: Principles of Nano-Optics, 1st edn, pp. 173–224. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  3. 3.
    Anger, P., Bharadwaj, P., Novotny, L.: Enhancement and quenching of single molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)CrossRefGoogle Scholar
  4. 4.
    Hoeppener, C., Novotny, L.: Antenna-based optical imaging of single Ca2 transmembrane proteins in liquids. Nano Lett. 8, 642–646 (2008)CrossRefGoogle Scholar
  5. 5.
    Keilmann, F., Hillenbrand, R.: Near-field microscopy by elastic light scattering from a tip. Phil. Trans. Roy. Soc. Lond. A 362, 787–805 (2004)CrossRefGoogle Scholar
  6. 6.
    Chen, C., Hayazawa, N., Kawata, S.: A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5, 3312 (2014)Google Scholar
  7. 7.
    Okamoto, H., Narushima, T., Nishiyama, Y., Imura, K.: Local optical responses of plasmon resonances visualised by near-field optical imaging. Phys. Chem. Chem. Phys. (Perspective) 17, 6192–6206 (2015)CrossRefGoogle Scholar
  8. 8.
    Okamoto, H., Imura, K.: Near-Field Optical Imaging of Nanoscale Optical Fields and Plasmon Waves. Jpn. J. Appl. Phys. 47, 6055–6062 (2008)CrossRefGoogle Scholar
  9. 9.
    Vallius, T., Jefimovs, K., Turunen, J., Vahimaa, P., Svirko, Y.: Optical activity in subwavelength-period arrays of chiral metallic particles. Appl. Phys. Lett. 83, 234–236 (2003)CrossRefGoogle Scholar
  10. 10.
    Kuwata-Gonokami, M. et al.: Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401-1-4 (2005)Google Scholar
  11. 11.
    Schäferling, M., Dregely, D., Hentschel, M. Giessen, H.: Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures. Phys. Rev. X 2, 031010-1-9 (2012)Google Scholar
  12. 12.
    Narushima, T., Okamoto, H.: Circular dichroism nano-imaging of two-dimensional metal nanostructures. Phys. Chem. Chem. Phys. 15, 13805–13809 (2013)CrossRefGoogle Scholar
  13. 13.
    Narushima, T., Okamoto, H.: Strong nanoscale optical activity localized in two-dimensional chiral metal nanostructures. J. Phys. Chem. C. 117, 23964–23969 (2013)CrossRefGoogle Scholar
  14. 14.
    Narushima, T., Hashiyada, S., Okamoto, H.: Nanoscopic study on developing optical activity with increasing chirality for two-dimensional metal nano- structures. ACS photonics 1, 732–738 (2014)CrossRefGoogle Scholar
  15. 15.
    Hashiyada, S., Narushima, T., Okamoto, H.: Local optical activity in achiral two-dimensional gold nanostructures. J. Phys. Chem. C. 118, 22229–22233 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute for Molecular ScienceOkazakiJapan

Personalised recommendations