Photoemission Electron Microscope

  • Toyohiko KinoshitaEmail author


PEEM is one of the imaging type photoelectron microscopy (Kinoshita et al. in J Phys Soc Jpn 82 2013 [1]). The apparatus is equipped with some electrostatic lens systems, a microchannel plate (MCP) and a fluorescent screen. When excitation photons are injected onto a sample, photoelectrons including secondary electrons are emitted. The lens systems magnify and focus the images of spatial distributions of these electrons from the sample onto the MCP. Then the screen is illuminated by these amplified electrons. By using a charge coupled device (CCD) camera, a magnified image of the emitted electron distributions from the sample surface can be obtained. When a mercury lamp or a deuterium lamp is used as an excitation source, the distribution of the local work function of the surface becomes visible, since the photon energy is about 4 eV.


Microscope Imaging Photoemission 


  1. 1.
    Kinoshita, T., Arai, K., Fukumoto, K., Ohkochi, T., Kotsugi, M., Guo, F.Z., Muro, T., Nakamura, T., Osawa, H., Matsushita, T., Okuda, T.: Observation of micro-magnetic structures by synchrotron radiation photoemission electron microscope. J. Phys. Soc. Jpn. 82, 021005/1-021005/24 (2013)CrossRefGoogle Scholar
  2. 2.
    Nakamura, T., Suzuki, M.: Recent progress of the X-ray magnetic circular dichroism technique for element-specific magnetic analysis. J. Phys. Soc. Jpn. 82, 021006/1-021006/20 (2013)CrossRefGoogle Scholar
  3. 3.
    See, for example, Thole, B.T., Van der Laan, G., Sawatzky, G.A.: Strong magnetic dichroism predicted in the M4, 5 X-ray absorption spectra of magnetic rare-earth materials. Phys. Rev. Lett. 55, 2086–2088 (1985)CrossRefGoogle Scholar
  4. 4.
    Amemiya, K.: In this compendiumGoogle Scholar
  5. 5.
    See, for example, Bauer, E.: LEEM and UHV-PEEM: a retrospective. Ultramicroscopy 119, 18–23 (2012)CrossRefGoogle Scholar
  6. 6.
    Hibino, H.: In this compendiumGoogle Scholar
  7. 7.
    Taniuchi, Y., Kotani, Y., Shin, S.: Ultrahigh-spatial-resolution chemical and magnetic imaging by laser-based photoemission electron microscopy. Rev. Sci. Instrum. 86, 023701/1-023701/5 (2015)CrossRefGoogle Scholar
  8. 8.
    Arai, K., Okuda, T., Tanaka, A., Fukumoto, K., Hasegawa, T., Nakamura, T., Matsushita, T., Muro, T., Kakizaki, A., Kinoshita, T.: Direct observation of spin configuration in an exchange coupled Fe/NiO(100) system by X-ray magnetic circular- and linear- dichroism photoemission electron microscope. J. Appl. Phys. 110 (2011) 084306/1-0843-6/6 (2011)CrossRefGoogle Scholar
  9. 9.
    Ohkochi, T., Yamaguchi, A., Hata, H., Goto, M., Nozaki, Y., Kotsugi, M., Nakamura, T., Osawa, H., Kinoshita, T.: Progress in time-resolved photoemission electron microscopy (PEEM) at BL25SU, SPring-8: Rf field excitation of magnetic vortex core gyration. Jpn. J. Appl. Phys. 51, 128001/1 ~ 128001/2 (2011)Google Scholar
  10. 10.
    Kinoshita, T., Ohkouchi, T., Osawa, H., Arai, K., Fukumoto, K., Okuda, T., Kotsugi, M., Muro, T., Nakamura, T., Matsushita, T.: Status of pump- and probe- time-resolved photoemission electron microscopy at the SPring-8. J. Electron Spectrosco. Relat. Phenom. 185, 389–394 (2012)Google Scholar
  11. 11.
    Kubo, A.: In this compendiumGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Japan Synchrotron Radiation Research Institute (JASRI), SPring-8HyogoJapan

Personalised recommendations