Advertisement

Impact Collision Ion Scattering Spectroscopy

  • Masakazu AonoEmail author
  • Mitsuhiro Katayama
Chapter

Abstract

Ion scattering spectroscopy (ISS) (Smith in J Appl Phys 38:340–347, 1967 [1]) is a real-space method that enables simultaneous analysis of the composition and structure of solid surfaces by utilizing elastic scattering of ions at the surfaces.

Keywords

Ion scattering spectroscopy (ISS) Coaxial ICISS (CAICISS) Structure Composition Subsurface 

References

  1. 1.
    Smith, D.P.: Scattering of low-energy noble gas ions from metal surfaces. J. Appl. Phys. 38, 340–347 (1967)CrossRefGoogle Scholar
  2. 2.
    Aono, M., Oshima, C., Zaima, S., Otani, S., Ishizawa, Y.: Quantitative surface atomic geometry and two-dimensional surface electron distribution analysis by a new technique in low-energy ion scattering. Jpn. Appl. Phys. 20, L829–L832 (1981)CrossRefGoogle Scholar
  3. 3.
    Katayama, M., Nomura, E., Kanekama, N., Soejima, H., Aono, M.: Coaxial impact-collision ion scattering spectroscopy (CAICISS): a novel method for surface structure analysis. Nucl. Instrum. Meth. Phys. Res. B 33, 857–861 (1988)CrossRefGoogle Scholar
  4. 4.
    Aono, M., Katayama, M., Nomura, E., Chasse, T., Choi, D., Kato, M.: Recent developments in low-energy ion scattering spectroscopy (ISS) for surface structural analysis. Nucl. Instrum. Meth. Phys. Res. B 37(38), 264–269 (1989)CrossRefGoogle Scholar
  5. 5.
    Aono, M., Katayama, M., Nomura, E.: Exploring surface structures by coaxial impact-collision ion scattering spectroscopy (CAICISS). Nucl. Instrum. Meth. Phys. Res. B 64, 29–37 (1992)CrossRefGoogle Scholar
  6. 6.
    Katayama, M.: Exploring surface processes by coaxial impact-collision ion scattering spectroscopy and time-of-flight elastic recoil detection analysis. Current Appl. Phys. 3, 65–69 (2003)CrossRefGoogle Scholar
  7. 7.
    Kamiya, I., Katayama, M., Nomura, E., Aono, M.: Separation of scattered ions and neutrals in CAICISS with an acceleration tube. Surf. Sci. 242, 404–409 (1991)CrossRefGoogle Scholar
  8. 8.
    Katayama, M., Williams, R.S., Kato, M., Nomura, E., Aono, M.: Structure analysis of the Si(111)√3 × √3 R30°-Ag surface. Phys. Rev. Lett. 66, 2762–2765 (1991)CrossRefGoogle Scholar
  9. 9.
    Katayama, M., Aono, M., Oigawa, H., Nannichi, Y., Sugahara, H., Oshima, M.: Surface structure of InAs(001) treated with (NH4)2Sx solution. Jpn. J. Appl. Phys. 30, L786–L789 (1991)CrossRefGoogle Scholar
  10. 10.
    Hashizume, T., Katayama, M., Jeon, D., Aono, M., Sakurai, T.: The Absolute coverage of K on the Si(111)-3x1-K surface. Jpn. J. Appl. Phys. 32, L1263–L1265 (1993)CrossRefGoogle Scholar
  11. 11.
    Kawai, M., Liu, Z.-Y., Hanada, T., Katayama, M., Aono, M.: Layer controlled growth of oxide superconductors. Appl. Surf. Sci. 82(83), 487–493 (1994)CrossRefGoogle Scholar
  12. 12.
    Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., Koinuma, H.: Atomic control of the SrTiO3 crystal surface. Science 266, 1540–1542 (1994)CrossRefGoogle Scholar
  13. 13.
    Fujino, T., Katayama, M., Inudzuka, K., Okuno, T., Oura, K., Hirao, T.: Surface hydroxyl formation on vacuum-annealed TiO2(110). Appl. Phys. Lett. 79, 2716–2718 (2001)CrossRefGoogle Scholar
  14. 14.
    Katayama, M., King, B.V., Nomura, E., Aono, M.: Structure analysis of the CaF2/Si(111) interface in its initial stage of formation by coaxial impact-collision ion scattering spectroscopy (CAICISS). Prog. Theore. Phys. Suppl. 106, 315–320 (1991)CrossRefGoogle Scholar
  15. 15.
    Fuse, T., Ryu, J.-T., Fujino, T., Inudzuka, K., Katayama, M., Oura, K.: Adsorption of H on the Ge/Si(001) surface as studied by time-of-flight elastic recoil detection analysis and coaxial impact collision ion scattering spectroscopy. Jpn. J. Appl. Phys. 38, 1359–1362 (1999)CrossRefGoogle Scholar
  16. 16.
    Fujino, T., Fuse, T., Ryu, J.-T., Inudzuka, K., Yamazaki, Y., Katayama, M., Oura, K.: Structural analysis of 6H-SiC(0001)√3 × √3 reconstructed surface. Jpn. J. Appl. Phys. 39, 6410–6412 (2000)CrossRefGoogle Scholar
  17. 17.
    Kato, M., Katayama, M., Chasse, T., Aono, M.: Channeling and backscattering of low energy ions. Nucl. Instrum. Meth. Phys. Res. B 39, 30–34 (1989)CrossRefGoogle Scholar
  18. 18.
    Katayama, M., King, B.V., Daley, R.S., Williams, R.S., Nomura, E., Aono, M.: Surface and interface structural analysis by coaxial impact collision ion scattering spectroscopy (CAICISS). In: Yoshimori, A., Watanabe, H. (eds.) Ordering at Surfaces and Interfaces, Vol. 17, pp. 67–72. Springer Series in Material Science (1992)Google Scholar
  19. 19.
    Oura, K., Sumitomo, K., Kobayashi, T., Kinoshita, T., Tanaka, Y., Shoji, F.: Adsorption of H on Si(111)-√3 × √3-Ag: evidence for Ag(111) agglomerates formation. Surf. Sci. 254, L460–L464 (1991)CrossRefGoogle Scholar
  20. 20.
    Nakanishi, S., Kawamoto, K., Fukuoka, N., Umezawa, K.: Low energy ion scattering analysis of the surface compositional change of Au3Cu(001) induced by oxygen chemisorption. Surf. Sci. 261, 342–348 (1992)CrossRefGoogle Scholar
  21. 21.
    Ohnishi, T., Ohtomo, A., Kawasaki, M., Takahashi, K., Yoshimoto, M., Koinuma, H.: Determination of surface polarity of c-Axis oriented ZnO films by coaxial impact-collision ion scattering spectroscopy. Appl. Phys. Lett. 72, 824–826 (1998)CrossRefGoogle Scholar
  22. 22.
    Sonoda, S., Shimizu, S., Shen, X.-Q., Hara, S., Okumura, H.: Characterization of polarity of Wurtzite GaN film grown by molecular beam epitaxy using NH3. Jpn. J. Appl. Phys. 39, L202–L204 (2000)CrossRefGoogle Scholar
  23. 23.
    Okuno, T., Fujino, T., Shindo, M., Katayama, M., Oura, K., Sonoda, S., Shimizu, S.: Influence of Mn incorporation on molecular beam epitaxial growth of GaMnN film. Jpn. J. Appl. Phys. 41, L415–L417 (2002)CrossRefGoogle Scholar
  24. 24.
    Katayama, M., Nomura, E., Soejima, H., Hayashi, S., Aono, M.: Real-time monitoring of molecular-beam epitaxy processes with coaxial impact-collision ion scattering spectroscopy (CAICISS). Nucl. Instrum. Meth. Phys. Res. B 45, 408–411 (1990)CrossRefGoogle Scholar
  25. 25.
    Katayama, M., Nakayama, T., McConville, C.F., Aono, M.: Influence of surfactant coverage on epitaxial growth of Ge on Si(001). Phys. Rev. B 54, 8600–8604 (1996)CrossRefGoogle Scholar
  26. 26.
    Sumitomo, K., Kobayashi, T., Shoji, F., Oura, K., Katayama, I.: Hydrogen-mediated epitaxy of Ag on Si(111) as studied by low-energy ion scattering. Phys. Rev. Lett. 66, 1193–1196 (1991)CrossRefGoogle Scholar
  27. 27.
    Katayama, M., Nakayama, T., McConville, C.F., Aono, M.: Surface and interface structural control using coaxial impact-collision ion scattering spectroscopy (CAICISS). Nucl. Instrum. Meth. Phys. Res. B 99, 598–601 (1995)CrossRefGoogle Scholar
  28. 28.
    Fujino, T., Okuno, T., Katayama, M., Oura, K.: Hydrogen segregation and its detrimental effect in epitaxial growth of Ge on hydrogen-terminated Si(001). Jpn. J. Appl. Phys. 40, L1173–L1175 (2001)CrossRefGoogle Scholar
  29. 29.
    Fujino, T., Katayama, M., Inoue, S., Tatsumi, A., Horikawa, T., Oura, K.: Quantitative analysis of hydrogen-induced Si segregation on Ge-covered Si(001) surface. Jpn. J. Appl. Phys. 42, L485–L488 (2003)CrossRefGoogle Scholar
  30. 30.
    Aono, M., Katayama, M.: A novel method for real-time monitoring of molecular beam epitaxy (MBE) processes. Proc. Jpn. Acad. 65(Ser. B), 137–141 (1989)CrossRefGoogle Scholar
  31. 31.
    Katayama, M., Fujino, T., Yamazaki, Y., Inoue, S., Ryu, J.-T., Oura, K.: Coaxial impact-collision ion scattering spectroscopy and time-of-flight elastic recoil detection analysis for in situ monitoring of surface processes in gas phase atmosphere. Jpn. J. Appl. Phys. 40, L576–L579 (2001)CrossRefGoogle Scholar
  32. 32.
    Fujino, T., Katayama, M., Yamazaki, Y., Inoue, S., Okuno, T., Oura, K.: Influence of hydrogen-surfactant coverage on Ge/Si(100) hetroepitaxy. Jpn. J. Appl. Phys. 41, L790–L793 (2002)CrossRefGoogle Scholar
  33. 33.
    Fujino, T., Katayama, M., Okuno, T., Shindo, M., Tsushima, R., Oura, K.: Thermal stability in the morphology of Ge films on Si(001) grown by hydrogen-surfactant-mediated epitaxy. Jpn. J. Appl. Phys. 42, L63–L66 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.International Center for Material Nanoarchitectonics (MANA), National Institute for Materials ScienceTsukubaJapan
  2. 2.Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations