X-Ray Standing Wave Method

  • Akira SaitoEmail author


Under the Bragg condition of X-rays in a crystal, the interference of incident and diffracted beams produces X-ray standing wave (XSW) field.


Bragg reflection Dynamical theory Standing wave Atomic coordinates Emission Excitation 


  1. 1.
    Zegenhagen, J.: Surface structure determination with X-ray standing waves. Surf. Sci. Rep. 18, 199–271 (1993)CrossRefGoogle Scholar
  2. 2.
    Wang, J., Bedzyk, M.J., Penner, T.L., Caffrey, M.: Structural studies of membranes and surface layers up to 1000 Å thick using X-ray standing waves. Nature 354, 377–380 (1991)CrossRefGoogle Scholar
  3. 3.
    Roddatis, V.V., Yakunin, S.N., Vasiliev, A.L., Kovalchuk, M.V., Seregin, A.U., Burbaev, T.M., Gordeev, M.N.: The microstructural and optical properties of Ge/Si heterostructures grown by low-temperature molecular beam epitaxy. J. Mater. Res. 28, 1432–1441 (2013)CrossRefGoogle Scholar
  4. 4.
    Saito, A., Matoba, K., Kurata, T., Maruyama, J., Kuwahara, Y., Miki, K., Aono, M.: Structural analysis of bismuth nanowire by X-Ray standing wave method. Jpn. J. Appl. Phys. 42, 2408–2411 (2003)CrossRefGoogle Scholar
  5. 5.
    Diehl, R.D., Li, H.I., Su, S.Y., Mayer, A., Stanisha, N.A., Ledieu, J., Lovelock, K.R.J., Jones, R.G., Deyko, A., Wearing, L.H., McGrath, R., Chaudhuri, A., Woodruff, D.P.: Quantitative adsorbate structure determination for quasicrystal using X-Ray standing waves. Phys. Rev. Lett. 113, 106101/1–106101/ 5 (2014)Google Scholar
  6. 6.
    Tiwari, M.K., Das, G., Bedzyk, M.J.: X-ray standing wave analysis of nanostructures using partially coherent radiation. Appl.Phys.Lett. 107, 103104/1–103104/5 (2015)CrossRefGoogle Scholar
  7. 7.
    Kröger, I; Stadtmüller, B.; Kumpf, C., Submonolayer and multilayer growth of titaniumoxide phthalocyanineon Ag(111), New J. Phys. 18, 113022/1–113022/20 (2016)CrossRefGoogle Scholar
  8. 8.
    Weiland, C., Rumaiz, A.K., Pianetta, P., Woicik, J.C.: Recent applications of hard x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A 34(3), 030801/1–030801/21 (2016)CrossRefGoogle Scholar
  9. 9.
    Zegenhagen, J.: Photoelectron spectroscopy of transition metal oxide interface. Eur. Phys. J. Appl. Phys. 70, 20701/1–20701/15 (2015)CrossRefGoogle Scholar
  10. 10.
    Stoltz, S.E., Ellis, D.E., Bedzyk, M.J.: Interface of Pt with SrTiO3(001); A combined theoretical and experimental study. Surf. Sci. 633, 8–16 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Division of Precision Science and Technology and Applied Physics, Graduate School of EngineeringOSAKA UniversityOsakaJapan
  2. 2.RIKEN SPring-8 CenterHyogoJapan

Personalised recommendations