Ultraviolet Photoelectron Spectroscopy

  • Kenichi OzawaEmail author


UPS is a photoelectron spectroscopy technique using photons in the ultraviolet region (typically from 10 to 150 eV) as an excitation source. The technique is used to study valence electronic structures of solid surfaces, molecular orbital energies of adsorbed species and work functions of the surfaces and their changes induced by the adsorption of atoms and molecules. Shallow (low binding energy) core levels of composite atoms of the surfaces are also accessible by UPS so that the chemical state analysis is possible like X-ray photoelectron spectroscopy (XPS).


Valence electronic structure Surface state Work function Band bending Density of states 


  1. 1.
    Koopmans, T.: Ordering of wave functions and eigen-energies to the individual electrons of an atom. Physica 1, 104–113 (1933)CrossRefGoogle Scholar
  2. 2.
    Tanuma, S., Powell, C.J., Penn, D.R.: Calculations of electron inelastic mean free paths. ix. data for 41 elemental solids over the 50 eV to 30 keV range. Surf. Interface Anal. 43, 689–713 (2011)CrossRefGoogle Scholar
  3. 3.
    Shevchik, N.J.: Simple grazing incidence far ultraviolet monochromator for differentially pumped discharge lamps. Rev. Sci. Instrum. 47, 1028–1033 (1976)CrossRefGoogle Scholar
  4. 4.
    Souma, S., Sato, T., Takahashi, T., Baltzer, P.: High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy. Rev. Sci. Instrum. 78, 123104/1–123104/4 (2007)CrossRefGoogle Scholar
  5. 5.
    Budke, M., Donath, M.: Ar gas discharge lamp with heated LiF window: a monochromatized light source for photoemission. Appl. Phys. Lett. 92, 231918/1–231918/3 (2008)CrossRefGoogle Scholar
  6. 6.
    Suga, S., Sekiyama, A., Funabashi, G., Yamaguchi, J., Kimura, M., Tsujibayashi, M., Uyama, T., Sugiyama, H., Tomida, Y., Kuwahara, G., Kitayama, S., Fukushima, K. Kimura, K., Yokoi, T., Murakami, K., Fujiwara, H., Saitoh, Y., Plucinski, L., Schneider, C.: High resolution, low \( h\nu\) photoelectron spectroscopy with the use of a microwave excited rare gas lamp and ionic crystal filters. Rev. Sci. Instrum. 81, 105111/1–105111/8 (2010)Google Scholar
  7. 7.
    Cazaux, J.: Mechanisms of Charging in Electron Spectroscopy. J. Electron Spectrosc. Relat. Phenom. 105, 115–185 (1999)CrossRefGoogle Scholar
  8. 8.
    Larson, P.E., Kelly, M.A.: Surface charge neutralization of insulating samples in X-ray photoemission spectroscopy. J. Vac. Sci. Technol., A 16, 3483–3489 (1998)CrossRefGoogle Scholar
  9. 9.
    Ozawa, K., Mimori, Y., Kato, H., Emori, M., Sakama, H., Imanishi, S., Edamoto, K., Mase, K.: Shockley surface state on α-brass(111) and its response to oxygen adsorption. Surf. Sci. 623, 6–12 (2014)CrossRefGoogle Scholar
  10. 10.
    Ozawa, K., Edamoto, K.: Photoelectron spectroscopy study of K adsorption on ZnO(\( 10\overline{1} 0 \)). Surf. Sci. 524, 78–88 (2003)Google Scholar
  11. 11.
    Zurcher, P., Bauer, R.S.: Photoemission determination of dipole layer and VB-discontinuity formation during the MBE growth of GaAs on Ge(110). J. Vac. Sci. Technol., A 1, 695–700 (1983)CrossRefGoogle Scholar
  12. 12.
    Aiura, Y., Ozawa, K., Hase, I., Bando, K., Haga, H., Kawanaka, H., Samizo, A., Kikuchi, N., Mase, K.: Disappearance of localized valence band maximum of ternary tin oxide with pyrochlore structure, Sn2Nb2O7. J. Phys. Chem. C. 121, 9480–9488 (2017) Google Scholar
  13. 13.
    Yeh, J.J., Lindau, I.: Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. Atom. Data Nucl. Data Table 32, 1–155 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryTokyo Institute of TechnologyTokyoJapan

Personalised recommendations