Gastric Pathology and Metalloproteinases

  • Snehasikta SwarnakarEmail author
  • Anirban Roy
  • Satyabrata Ghosh
  • Rajib Majumder
  • Sandip Paul


The spectrum of gastric pathologies involves heterogeneity with respect to biochemical mechanisms and clinical outcome and is globally common. Each year, 5–6 million people worldwide are affected by gastric ulcer, gastric cancer and inflammatory bowel diseases, and mortality rate being >50% shows steep increase in incidence. Hence, understanding the underlying pathogenesis and better therapeutic strategies remain the major challenges in gastroenterology field. Current knowledge of gastric pathology reveals that extracellular proteases vastly influence functional irregularities of cells along with their responses to microenvironment. Based on studies on metalloproteinases and their inhibitors, it is well accepted about their important roles in physiological developmental processes as well as pathological conditions. From past several years of extensive research on matrix, metalloproteinases (MMPs) establish their critical role in several cellular functions including proliferation, apoptosis and angiogenesis. MMPs are a family of “molecular scissors” with ambivalent actions and ability to cleave extracellular matrix (ECM) proteins that in turn facilitate tissue remodelling. Approximately, 27 subtypes of MMPs are there having mutual interaction among each of them in gastrointestinal disorders. Functional overlap between the MMPs leads to non-specificity, which makes designing MMP inhibitors more difficult. Thus, specific MMP inhibitors would be promising therapeutic tool against inflammatory diseases including gastric diseases. This chapter illustrates the new insights into mechanism of MMP regulation in gastrointestinal inflammatory disorders encompassing clinical trials for MMP inhibitors and new therapeutic strategies by targeting specific MMP(s) to control gastrointestinal pathologies.


Gastric ulcer Cancer Matrix metalloproteinase Inhibitor Helicobacter pylori 



The financial assistance from CSIR network projects HUM (BSC 0119) and INDEPTH (BSC 0111) is thankfully acknowledged.


  1. 1.
    Verma RP, Hansch C (2007) Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg Med Chem 15:2223–2268PubMedCrossRefGoogle Scholar
  2. 2.
    Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:a005058PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Gomis-Rüth FX (2009) Catalytic domain architecture of metzincin metalloproteases. J Biol Chem 284:15353–15357PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lund J, Olsen OH, Sørensen ES, Stennicke HR, Petersen HH, Overgaard MT (2013) ADAMDEC1 is a metzincin metalloprotease with dampened proteolytic activity. J Biol Chem 288:21367–21375PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ikonomidou C (2014) Matrix metalloproteinases and epileptogenesis. Mol Cell Pediatr 1:6 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Mizoguchi H, Yamada K (2013) Roles of matrix metalloproteinases and their targets in epileptogenesis and seizures. Clin Psychopharmacol Neurosci 11:45–52PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Gong Y, Chippada-Venkata UD, Oh WK (2014) Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancers 6:1298–1327PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Massova I, Kotra LP, Fridman R, Maboshery S (1998) Matrix metalloproteinases: structures, evolution and diversification. FASEB J 12:1075–1095PubMedCrossRefGoogle Scholar
  10. 10.
    Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494PubMedCrossRefGoogle Scholar
  11. 11.
    Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Harper E, Bloch KJ, Gross J (1971) The zymogen of tadpole collagenase. Biochemistry 10(16):3035–3041 PubMedCrossRefGoogle Scholar
  13. 13.
    Ra H-J, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26:587–596PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Löffek S, Schilling O, Franzke C-W (2011) Biological role of matrix metalloproteinases: a critical balance. Eur Respir J 38:191–208PubMedCrossRefGoogle Scholar
  15. 15.
    Andrian E, Mostefaoui Y, Rouabhia M, Grenier D (2007) Regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by Porphyromonas gingivalis in an engineered human oral mucosa model. J Cell Physiol 211:56–62PubMedCrossRefGoogle Scholar
  16. 16.
    Carvalho HF, Roque ACA, Iranzo O, Branco RJF (2015) Comparison of the internal dynamics of metalloproteases provides new insights on their function and evolution. PLoS ONE 10:e0138118PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gomis-Rüth FX (2003) Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol 24:157–202PubMedCrossRefGoogle Scholar
  18. 18.
    Tallant C, Marrero A, Gomis-Rüth FX (2010) Matrix metalloproteinases: fold and function of their catalytic domains. Biochimica Biophysica Acta Mol Cell Res 1803:20–28CrossRefGoogle Scholar
  19. 19.
    Fridman R (2003) Surface association of secreted metalloproteinases. Curr Top Dev Biol Elsevier Sci. 54:75–100Google Scholar
  20. 20.
    Cerdà-Costa N, Gomis-Rüth FX (2014) Architecture and function of metallopeptidase catalytic domains. Protein Sci 23:123–144PubMedCrossRefGoogle Scholar
  21. 21.
    Duan JX, Rapti M, Tsigkou A, Lee MH (2015) Expanding the activity of tissue inhibitors of metalloproteinase (TIMP)-1 against surface-anchored metalloproteinases by the replacement of its C-terminal domain: implications for anti-cancer effects. PLoS ONE 10(8):e0136384PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases structure, function, and biochemistry. Circ Res 92:827–839PubMedCrossRefGoogle Scholar
  23. 23.
    Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803:55–71PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 3164734:1–23CrossRefGoogle Scholar
  25. 25.
    Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Fu X, Kassim SY, Parks WC, Heinecke JW (2003) Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem 278:28403–28409PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Langton KP, McKie N, Smith BM, Brown NJ, Barker MD (2005) Sorsby’s fundus dystrophy mutations impair turnover of TIMP-3 by retinal pigment epithelial cells. Hum Mol Genet 14(23):3579–3586PubMedCrossRefGoogle Scholar
  28. 28.
    Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Egeblad M, Werb Z (2002) New functions for matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174CrossRefPubMedGoogle Scholar
  30. 30.
    Martin TA, Ye L, Slanders AJ, Lane J, Jiang WG (2013) Cancer invasion and metastasis: molecular and cellular perspective. In: Jandial R Metastatic cancer: clinical and biological perspectives. Landes BioscienceGoogle Scholar
  31. 31.
    Rundhaug JE (2003) Matrix metalloproteinases, angiogenesis, cancer. Clin Cancer Res 9:551–554PubMedGoogle Scholar
  32. 32.
    Sang QXA (1998) Complex role of matrix metalloproteinases in angiogenesis. Cell Res 8:171–177PubMedCrossRefGoogle Scholar
  33. 33.
    Murch SH, MacDonald TT, Walker-Smith JA, Lionetti P, Levin M, Klein NJ (1993) Disruption of sulphated glycosaminoglycans in intestinal inflammation. Lancet 341:711–714PubMedCrossRefGoogle Scholar
  34. 34.
    O’Sullivan S, Gilmer JF, Medina C (2015) Matrix metalloproteinases in inflammatory bowel disease: an update. Med Inflamm 964131:1–19CrossRefGoogle Scholar
  35. 35.
    Shihab PK, Al-Roub A, Al-Ghanim M, Al-Mass A, Behbehani K, Ahmad R (2015) TLR2 and AP-1/NF-kappaB are involved in the regulation of MMP-9 elicited by heat killed Listeria monocytogenes in human monocytic THP-1 cells. J Inflamm 12:32–40CrossRefGoogle Scholar
  36. 36.
    Hansen JM, Hallas J, Lauritsen JM, Bytzer P (1996) Non-steroidal anti-inflammatory drugs and ulcer complications: a risk factor analysis for clinical decision-making. Scand J Gastroenterol 31:126–130PubMedCrossRefGoogle Scholar
  37. 37.
    Matsui H, Shimokawa O, Kanekon T, Nagano Y, Rai K, Hyodo I (2011) The pathophysiology of non-steroidal anti-inflammatory drug (NSAID) induced mucosal injuries in stomach and small intestine. J Clin Biochem Nutr 48(2):107–111PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Res Int ID 761264:19 pGoogle Scholar
  39. 39.
    Musumba C, Pritchard DM, Pirmohamed M (2009) Cellular and molecular mechanisms of NSAID-induced peptic ulcers. Aliment Pharmacol Ther 30(6):517–531PubMedCrossRefGoogle Scholar
  40. 40.
    Frankowski H, Gu YH, Heo JH, Milner R, del Zoppo GJ (2012) Use of gel zymography to examine matrix metalloproteinase (gelatinase) expression in brain tissue or in primary glial cultures. Methods Mol Biol 814:221–233PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Verma S, Kesh K, Ganguly N, Jana S, Swarnakar S (2014) Matrix metalloproteinases and gastrointestinal cancers: impacts of dietary antioxidants. World J Biol Chem 26:355–376CrossRefGoogle Scholar
  42. 42.
    Wroblewski LE, Peek M, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23:713–739PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Cheng HC, Yang HB, Chang WL, Chen WY, Yeh YC, Sheu BS (2012) Expressions of MMPs and TIMP-1 in gastric ulcers may differentiate H. pylori infected from NSAID-related ulcers. Sci World J ID 539316:9Google Scholar
  44. 44.
    Cheng CL, Guo JS, Luk J, Koo MWL (2004) The healing effects of Centella and asiaticoside on acetic acid induced gastric ulcers in rats. Life Sci 74(18):2237–2249PubMedCrossRefGoogle Scholar
  45. 45.
    Ganguly K, Kundu P, Banerjee A, Reiter RJ, Swarnakar S (2006) Hydrogen peroxide-mediated downregulation of matrix metalloproteinase-2 in indomethacin-induced acute gastric ulceration is blocked by melatonin and other antioxidants. Free Rad Biol Med 41:911–925PubMedCrossRefGoogle Scholar
  46. 46.
    Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kar S, Subbaram S, Carrico PM, Melendez JA (2010) Redox-control of matrix metalloproteinase-1: a critical link between free radicals, matrix remodeling and degenerative disease. Respir Physiol Neurobiol 31:299–306CrossRefGoogle Scholar
  48. 48.
    Singh LP, Kundu P, Ganguly K, Mishra A, Swarnakar S (2007) Novel role of famotidine in downregulation of matrix metalloproteinase-9 during protection of ethanol-induced acute gastric ulcer. Free Rad Biol Med 43:289–299CrossRefGoogle Scholar
  49. 49.
    Chakraborty S, Stalin S, Das N, Choudhury ST, Swarnakar Ghosh S S (2012) The use of nano-quercetin to arrest mitochondrial damage and MMP-9 upregulation during prevention of gastric inflammation induced by ethanol in rat. Biomaterials 33:2991–3001PubMedCrossRefGoogle Scholar
  50. 50.
    Rahman R, Asombang AW, Ibdah JA (2014) Characteristics of gastric cancer in Asia. World J Gastroenterol 20:4483–4490PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Fox JG, Wang TC (2007) Inflammation, atrophy, and gastric cancer. J Clin Invest 117:60–69PubMedCrossRefGoogle Scholar
  52. 52.
    Correa P, Piazuelo MB (2011) Helicobacter pylori infection and gastric adenocarcinoma. US Gastroenterol Hepatol Rev 7(1):59–64PubMedPubMedCentralGoogle Scholar
  53. 53.
    Dey S, Ghosh N, Saha D, Kesh K, Gupta A, Swarnakar S (2014) Matrix metalloproteinase-1 (MMP-1) promoter polymorphisms are well linked with lower stomach tumor formation in eastern Indian Population. PLoS ONE 9:e88040PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Witty JP, McDonnell S, Newell KJ, Cannon P, Navre M, Tressler RJ, Matrisian LM (1994) Modulation of matrilysin levels in colon carcinoma cell lines affects tumorigenicity in vivo. Cancer Res 54:4805–4812PubMedGoogle Scholar
  55. 55.
    Dey S, Stalin S, Gupta A, Saha D, Kesh K, Swarnakar S (2012) Matrix metalloproteinase-3 gene promoter polymorphisms and their haplotypes are associated with gastric cancer risk in eastern Indian population. Mol Carcinog 51:E42–E53PubMedCrossRefGoogle Scholar
  56. 56.
    Kesh K, Subramanian L, Ghosh N, Gupta V, Gupta A, Bhattacharya S, Mahapatra NR, Swarnakar S (2015) Association of MMP7-181A → G promoter polymorphism with gastric cancer risk. J Biol Chem 290:14391–14406PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Shan YQ, Ying RC, Zhou CH, Zhu AK, Ye J, Zhu W et al (2015) MMP-9 is increased in the pathogenesis of gastric cancer by the mediation of HER2. Cancer Gene Ther 22:101–107PubMedCrossRefGoogle Scholar
  58. 58.
    Yoo YA, Kang MH, Lee HJ, Kim BH, Park JK, Kim HK, Kim JS, Oh SC (2011) Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer Res 71:61–69Google Scholar
  59. 59.
    Alakus H, Grass AG, Hennecken JK, Bollschweiler E, Schulte C, Drebber U, Baldus SE, Metzger R, Hölscher AH, Mönig SP (2008) Clinicopathological significance of MMP-2 and its specific inhibitor TIMP-2 in gastric cancer. Histol Histopathol 23:917–923PubMedGoogle Scholar
  60. 60.
    Markman JL, Shiao SL (2015) Impact of the immune system and immunotherapy in colorectal cancer. J Gastrointest Oncol 6:208–223PubMedPubMedCentralGoogle Scholar
  61. 61.
    Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X (2010) Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancers. Int J Cancer 127(1):118–126PubMedCrossRefGoogle Scholar
  62. 62.
    Fanjul-Fernández M, Folgueras AR, Cabrera S, López-Otín C (2010) Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta Mol Cell Res 1803:3–19CrossRefGoogle Scholar
  63. 63.
    Grivennikov SI (2013) Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol 35(2):229–244PubMedCrossRefGoogle Scholar
  64. 64.
    Said AH, Raufman JP, Xie G (2014) The role of matrix metalloproteinases in colorectal cancer. Cancers 6(1):366–375PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Cherukua HR, Mohamedalib A, Cantora DI, Tanc SH, Niced EC, Baker MS (2015) Transforming growth factor-b, MAPK and Wnt signaling interactions in colorectal cancer. EuPa Open Proteom 8:104–115CrossRefGoogle Scholar
  66. 66.
    Iiizumi M, Liu W, Pai SK, Furuta E, Watabe K (2008) Drug development against metastasis-related genes and their pathways: a rationale for cancer therapy. Biochim Biophys Acta 1786(2):87–104PubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhiqin W, Palaniappan S, Ali R, Affendi R (2014) Inflammatory bowel disease-related colorectal cancer in the Asia-Pacific region: past, present, and future. Intest Res 12:194–204PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    M’Koma AE (2013) Inflammatory bowel disease: an expanding global health problem. Clin Med Insights Gastroenterol 6:33–47PubMedPubMedCentralGoogle Scholar
  69. 69.
    Medina C, Radomski MW (2006) Role of matrix metalloproteinases in intestinal inflammation. J Pharmacol 318(3):933–938Google Scholar
  70. 70.
    O’Sullivan S, Gilmer JF, Medina C (2015) Matrix metalloproteinases in inflammatory bowel disease: an update. Mediators Inflamm ID 964131:19Google Scholar
  71. 71.
    Deban L, Correale C, Vetrano S, Malesci A, Danese S (2008) Multiple pathogenic roles of microvasculature in inflammatory bowel disease: a jack of all trades. Am J Pathol 172(6):1457–1466PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Lakatos G, Sipos F, Miheller P, Hritz I, Varga MZ, Juhasz M et al (2011) The behavior of matrix metalloproteinase-9 in lymphocytic colitis, collagenous colitis and ulcerative colitis. Pathol Oncol Rep 18(1):85–91CrossRefGoogle Scholar
  73. 73.
    Shimoda M, Horiuchi K, Sasaki A et al (2016) Epithelial cell-derived a disintegrin and metalloproteinase-17 confers resistance to colonic inflammation through EGFR activation. EBioMedicine 5:114–124PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Walter L, Harper C, Garg P (2013) Role of matrix metalloproteinases in inflammation/colitis-associated colon cancer. Immuno-Gastroenterol 2:22–28Google Scholar
  75. 75.
    Laroui H, Geem D, Xiao B et al (2014) Targeting intestinal inflammation with CD98 siRNA/PEI—loaded nanoparticles. Mol Ther 22(1):69–80PubMedCrossRefGoogle Scholar
  76. 76.
    Godoy-Santos AL, Trevisan R, Fernandes TD, dos Santos MCLG (2011) Association of MMP-8 polymorphisms with tendinopathy of the primary posterior tibial tendon: a pilot study. Clinics 66(9):1641–1643PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Li D-Q, Luo L, Chen Z, Kim H-S, Song XJ, Pflugfelder SC (2006) JNK and ERK MAP kinases mediate induction of IL-1β, TNF-α and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res 82(4):588–596PubMedCrossRefGoogle Scholar
  78. 78.
    Moon CM, Jung S-A, Kim S-E, Song HJ, Jung Y, Ye BD et al (2015) Clinical factors and disease course related to diagnostic delay in Korean Crohn’s disease patients: results from the connect study. PLoS ONE 10(12):e0144390. doi: 10.1371/journal.pone.0144390CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Sullivan SO’, Gilmer JF, Medina C (2015) Matrix metalloproteinases in inflammatory bowel disease: an update. Mediators Inflamm ID 964131:19 pGoogle Scholar
  80. 80.
    Pedersen G, Saermark T, Kirkegaard T, Brynskov J (2009) Spontaneous and cytokine induced expression and activity of matrix metalloproteinases in human colonic epithelium. Clin Exp Immunol 155(2):257–265PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    García MF, González-Reyes S, González LO et al (2010) Comparative study of the expression of metalloproteases and their inhibitors in different localizations within primary tumours and in metastatic lymph nodes of breast cancer. Int J Exp Pathol 91(4):324–334PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Chang Y, Chiu Y, Cheng H et al (2015) Down-regulation of TIMP-1 inhibits cell migration, invasion, and metastatic colonization in lung adenocarcinoma. Tumor Biol 36:3957. doi: 10.1007/s13277-015-3039-5CrossRefGoogle Scholar
  83. 83.
    Pereira AC, Dias do Carmo E, Dias da Silva MA, Blumer Rosa LE (2012) Matrix metalloproteinase gene polymorphisms and oral cancer. J Clin Exp Dent 4(5):e297–e301Google Scholar
  84. 84.
    Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803. doi: 10.3748/wjg.v21.i29.8787CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Kusters JG, van Vliet AHM, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19(3):449–490PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Nardone G, Compare D (2015) The human gastric microbiota: is it time to rethink the pathogenesis of stomach diseases? United Eur Gastroenterol J 3(3):255–260CrossRefGoogle Scholar
  87. 87.
    Wang Z-K, Yang Y-S (2013) Upper gastrointestinal microbiota and digestive diseases. World J Gastroenterol 19(10):1541–1550PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Wroblewski LE, Peek RM, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23(4):713–739PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Salih BA (2009) Helicobacter pylori infection in developing countries: the burden for how long? Saudi J Gastroenterol 15(3):201–207PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Amsterdam KV, Van Vliet AHM, Kusters JG, Ende AVD (2006) Of microbe and man: determinants of H. pylori related diseases. Microbiol Rev 30(1):131–156Google Scholar
  91. 91.
    Fox JG, Wang TC (2007) Inflammation, atrophy and gastric cancer. J Clin Invest 117(1):60–69PubMedCrossRefGoogle Scholar
  92. 92.
    Fitzgerald RC, Caldas C (2004) Clinical implications of E-cadherin associated hereditary diffuse gastric cancer. Gut 53(6):775–778PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Hu B, El Hajj N, Sittler S, Lammert N, Barnes R, Meloni-Ehrig A (2012) Gastric cancer: classification, histology and application of molecular pathology. J Gastrointest Oncol 3(3):251–261PubMedPubMedCentralGoogle Scholar
  94. 94.
    Alzahrani S, Lina TT, Gonzalez J, Pinchuk IV, Beswick EJ, Reyes VE (2014) Effect of Helicobacter pylori on gastric epithelial cells. World J Gastroenterol 20(36):12767–12780PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Peek RM, Fiske C, Wilson KT (2010) Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiol revi 90(3):831–858CrossRefGoogle Scholar
  96. 96.
    White JR, Winter JA, Robinson K (2015) Differential inflammatory response to Helicobacter pylori infection: etiology and clinical outcomes. J Inflamm Res 8:137–147PubMedPubMedCentralGoogle Scholar
  97. 97.
    Gööz M, Shaker M, Gööz P, Smolka AJ (2003) Interleukin 1β induces gastric epithelial cell matrix metalloproteinase secretion and activation during Helicobacter pylori infection. Gut 52(9):1250–1256PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Pillinger MH, Marjanovic N, Kim SY, Lee YC, Scher JU, Roper J et al (2007) Helicobacter pylori stimulates gastric epithelial cell MMP-1 secretion via CagA-dependent and -independent ERK activation. J Biol Chem 282(26):18722–18731PubMedCrossRefGoogle Scholar
  99. 99.
    Oliveira MJ, Costa AC, Costa AM, Henriques L, Suriano G, Atherton JC (2006) Helicobacter pylori induces gastric epithelial cell invasion in a c Met and type IV secretion system-dependent manner. J Biol Chem 281(46):34888–34896PubMedCrossRefGoogle Scholar
  100. 100.
    Kundu P, De R, Pal I, Mukhopadhyay AK, Saha DR, Swarnakar S (2011) Curcumin alleviates matrix metalloproteinase-3 and -9 activities during eradication of Helicobacter pylori infection in cultured cells and mice. PLoS ONE 6(1):e16306PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Stein M, Ruggiero P, Rappuoli R, Bagnoli F (2013) Helicobacter pylori CagA: from pathogenic mechanisms to its use as an anti-cancer vaccine. Front Immunol 4:328PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Jiang H, Zhou Y, Liao Q, Ouyang H (2014) Helicobacter pylori infection promotes the invasion and metastasis of gastric cancer through increasing the expression of matrix metalloproteinase-1 and matrix metalloproteinase-10. Exp Ther Med 8(3):769–774PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Costa AM, Ferreira RM, Pinto-Ribeiro I, Sougleri IS, Oliveira MJ, Carreto L et al (2016) Helicobacter pylori activates matrix metalloproteinase-10 in gastric epithelial cells via EGFR and ERK-mediated pathways. J Infect Dis 214(4)Google Scholar
  104. 104.
    Bebb JR, Letley DP, Thomas RJ, Aviles F, Collins HM, Watson SA et al (2003) Helicobacter pylori upregulates matrilysin (MMP-7) in epithelial cells in vivo and in vitro in a Cag dependent manner. Gut 52(10):1408–1413PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Nam YH, Ryu E, Lee D, Shim HJ, Lee YC, Lee ST (2011) Cag-A phosphorylation dependent MMP-9 expression in gastric epithelial cells. Helicobacter 16(4):276–283PubMedCrossRefGoogle Scholar
  106. 106.
    Dethlefsen L, Mcfall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818PubMedCrossRefGoogle Scholar
  107. 107.
    Delgado S, Cabrera-Rubio R, Mira A, Suarez A, Mayo B (2013) Microbiological survey of the human gastric ecosystem using culturing an pyrosequencing methods. Microb Ecol 65:763–772PubMedCrossRefGoogle Scholar
  108. 108.
    Wu WM, Yang YS, Peng LH (2014) Microbiota in the stomach: new insights. J Dig Dis 15:54–61PubMedCrossRefGoogle Scholar
  109. 109.
    Sheh A, Fox JG (2013) The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut Microbes 4:505–531PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois F, Perez-Perez E, Blaser MJ, Relman DA (2006) Molecular analysis of bacterial microbiota in human stomach. Proc Natl Acad Sci U S A 103:732–737PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3(7):e2836PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Khosravi Y, Dieye Y, Poh BH, Ng CG, Loke MF, Goh KL, Vadivelu J (2014) Culturable bacterial microbiota of the stomach of helicobacter pylori positive and negative gastric disease patients. Sci World J 2014:610421Google Scholar
  113. 113.
    Eun CS, Kim BK, Han DS, Kim SY, Kim KM, Choi BY, Song KS, Kim YS, Kim JF (2014) Differences in gastric mucosal microbiota profiling in patients with chronic gastritis, intestinal metaplasia, and gastric cancer using pyrosequencing methods. Helicobacter 19:407–416PubMedCrossRefGoogle Scholar
  114. 114.
    Correa P (1992) Human gastric carcinogenesis: a multistep and multifactorial process—first American cancer society award lecture on cancer epidemiology and prevention. Cancer Res 52:6735–6740PubMedGoogle Scholar
  115. 115.
    Polk DB, Peek RM Jr (2010) Helicobacter pylori: gastric cancer and beyond. Nat Rev Caner 10:403–414CrossRefGoogle Scholar
  116. 116.
    Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, Taniyama K, Sasaki N, Schlemper RJ (2001) Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345:784–789PubMedCrossRefGoogle Scholar
  117. 117.
    Aviles-Jimenez F, Vazquez-Jimenez F, Medrano-Guzman R, Mantilla A, Torres J (2014) Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci Rep 4:4202PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Vandenbroucke RE, Libert C (2014) Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 13:904–927PubMedCrossRefGoogle Scholar
  119. 119.
    Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Cathcart J, Pulkoski-Gross A, Cao J (2015) Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis 2:26–34Google Scholar
  121. 121.
    Devy L, Dransfield DT (2011) New strategies for the next generation of matrix-metalloproteinase inhibitors: selectively targeting membrane-anchored MMPs with therapeutic antibodies. Biochem Res Int 2011:1–11Google Scholar
  122. 122.
    Remacle AG, Golubkov VS, Shiryaev SA, Dahl R, Stebbins JL, Chernov AV, Cheltsov AV, Pellecchia M, Strongin AY (2012) Novel MT1-MMP small-molecule inhibitors based on insights into hemopexin domain function in tumor growth. Cancer Res 72:2339–2349PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Coppola JM, Bhojani MS, Ross BD, Rehemtulla A (2008) A small-molecule furin inhibitor inhibits cancer cell motility and invasiveness. Neoplasia 10:363–370PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Albini A, Tosetti F, Li VW, Noonan DM, Li WW (2012) Cancer prevention by targeting angiogenesis. Nat Rev Clin Oncol 9:498–509PubMedCrossRefGoogle Scholar
  125. 125.
    Dormán G, Cseh S, Hajdú I, Barna L, Kónya D, Kupai K, Kovács L, Ferdinandy P (2010) Matrix metalloproteinase inhibitors: a critical appraisal of design principles and proposed therapeutic utility. Drugs 70:949–964PubMedCrossRefGoogle Scholar
  126. 126.
    García-Pardo A, Opdenakker G (2015) Nonproteolytic functions of matrix metalloproteinases in pathology and insights for the development of novel therapeutic inhibitors. Metalloproteinases Med 2:19–28CrossRefGoogle Scholar
  127. 127.
    Hu J, Van den Steen PE, Sang Q-XA, Opdenakker G (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug discov 6:480–498PubMedCrossRefGoogle Scholar
  128. 128.
    Cathcart J, Pulkoski-Gross A, Cao J (2015) Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis 2(1):26–34PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Wojtowicz-Praga S, Low J, Marshall J, Ness E, Dickson R, Barter J, Sale M, McCann P, Moore J, Cole A (1996) Phase I trial of a novel matrix metalloproteinase inhibitor batimastat (BB-94) in patients with advanced cancer. Invest New Drugs 14:193–202PubMedCrossRefGoogle Scholar
  130. 130.
    Lu C, Lee JJ, Komaki R et al (2010) Chemoradiotherapy with or without AE-941 in stage III non-small cell lung cancer: a randomized phase III trial. J Natl Cancer Inst 102(12):859–865PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Bissett D, O’Byrne KJ, Von Pawel J, Gatzemeier U, Price A, Nicolson M, Mercier R, Mazabel E, Penning C, Zhang MH (2005) Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. J Clin Oncol 23:842–849PubMedCrossRefGoogle Scholar
  132. 132.
    Leighl NB, Paz-Ares L, Douillard J-Y, Peschel C, Arnold A, Depierre A, Santoro A, Betticher DC, Gatzemeier U, Jassem J (2005) Randomized phase III study of matrix metalloproteinase inhibitor BMS-275291 in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: National Cancer Institute of Canada-Clinical Trials Group Study BR. 18. J Clin Oncol 23:2831–2839PubMedCrossRefGoogle Scholar
  133. 133.
    Sparano JA, Bernardo P, Stephenson P, Gradishar WJ, Ingle JN, Zucker S, Davidson NE (2004) Randomized phase III trial of marimastat versus placebo in patients with metastatic breast cancer who have responding or stable disease after first-line chemotherapy: Eastern Cooperative Oncology Group Trial E2196. J Clin Oncol 22:4683–4690PubMedCrossRefGoogle Scholar
  134. 134.
    Le Quement C, Guenon I, Gillon JY, Valenca S, Cayron-Elizondo V, Lagente V, Boichot E (2008) The selective MMP-12 inhibitor, AS111793 reduces airway inflammation in mice exposed to cigarette smoke. Br J Pharmacol 154:1206–1215PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801. doi: 10.1038/nrm3904CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Snehasikta Swarnakar
    • 1
    Email author
  • Anirban Roy
    • 1
  • Satyabrata Ghosh
    • 1
  • Rajib Majumder
    • 1
  • Sandip Paul
    • 2
  1. 1.Cancer Biology and Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyKolkataIndia
  2. 2.Structural Biology and Bioinformatics DivisionCSIR-Indian Institute of Chemical BiologyKolkataIndia

Personalised recommendations