Advertisement

An Overview on Polymer Gels Applied to Enzyme and Cell Immobilization

  • Gustavo Pagotto Borin
  • Ricardo Rodrigues de Melo
  • Elaine Crespim
  • Helia Harumi Sato
  • Fabiano Jares Contesini
Chapter
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)

Abstract

Immobilization of enzymes and cells is crucial in several industrial areas. This is mainly due to the possibility to improve enzyme properties including thermal stability, substrate selectivity, and biocatalyst reuse. These modifications allow for a considerable decrease in the cost of many commercial applications. The use of polymer gels for cell and enzyme immobilization presents numerous advantages over other immobilization supports, since they allow the protein or cell entrapment to be performed in a more efficient and simpler way. The polymers used here include polysaccharides and synthetic polymers in which several industrially relevant enzymes were immobilized with positive results. In addition to the immobilization of enzymes, there are many studies reporting the immobilization of microbial cells in polymers for enzyme production. Enzyme and cell immobilization in polymer gels show potential to deliver useful and efficient strategies to make use of microbial enzymes from an industrial point of view. However, further efforts must be made to better understand and apply immobilization of biocatalysts and to develop new technologies. This chapter focuses on general aspects of polymer gels, particularly regarding the immobilization of enzymes and microbial cells in different industrial fields.

Keywords

Polymer gel Immobilization Microbial enzymes Whole-cells 

References

  1. Abdulla R, Ravindra P (2013) Characterization of cross linked Burkholderia cepacia lipase in alginate and k-carrageenan hybrid matrix. J Taiwan Inst Chem Eng 44:545–551.  https://doi.org/10.1016/j.jtice.2013.01.003CrossRefGoogle Scholar
  2. Agbor VB, Cicek N, Sparling R et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685.  https://doi.org/10.1016/j.biotechadv.2011.05.005CrossRefPubMedGoogle Scholar
  3. Andrade GSS (2012) Produção de Biodiesel a partir de Óleos Vegetais usando Células Íntegras Imobilizadas de Fungos Filamentosos com Elevada Atividade Lipolítica. Universidade de São PauloGoogle Scholar
  4. Anu Prathap MU, Chaurasia AK, Sawant SN, Apte SK (2012) Polyaniline-based highly sensitive microbial biosensor for selective detection of lindane. Anal Chem 84:6672–6678.  https://doi.org/10.1021/ac301077dCrossRefPubMedGoogle Scholar
  5. Awad GEA, Esawy MA, El-gammal EW et al (2015) Comparative studies of free and immobilized phytase, produced by P. Purpurogenu GE1, using grafted alginate/carrageenan beads. Egypt Pharm J 14:87–93.  https://doi.org/10.4103/1687-4315.161268CrossRefGoogle Scholar
  6. Ban K, Hama S, Nishizuka K et al (2002) Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production. J Mol Catal B Enzym 17:157–165.  https://doi.org/10.1016/S1381-1177(02)00023-1CrossRefGoogle Scholar
  7. Ban K, Kaieda M, Matsumoto T et al (2001) Whole cell biocatalyst for biodiesel fuel production utilizing R. oryzae cells immobilized within biomass support particles. Biochem Eng J 8:39–43CrossRefPubMedGoogle Scholar
  8. Berger J, Reist M, Mayer JM et al (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34.  https://doi.org/10.1016/S0939-6411(03)00161-9CrossRefPubMedGoogle Scholar
  9. Betigeri SS, Neau SH (2002) Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 23:3627–3636.  https://doi.org/10.1016/S0142-9612(02)00095-9CrossRefPubMedGoogle Scholar
  10. Bianchini LF, Arruda MFC, Vieira SR, Campelo PMS (2015) Microbial biotransformation to obtain new antifungals. Front Microbiol 6:1–12.  https://doi.org/10.3389/fmicb.2015.01433CrossRefGoogle Scholar
  11. Bibi Z, Shahid F, Ali S et al (2015) Agar-agar entrapment increases the stability of endo-β-1,4-xylanase for repeated biodegradation of xylan. Int J Biol Macromol 75:121–127.  https://doi.org/10.1016/j.ijbiomac.2014.12.051CrossRefPubMedGoogle Scholar
  12. Bisht D, Yadav SK, Darmwal NS et al (2013) Optimization of immobilization conditions by conventional and statistical strategies for alkaline lipase production by P. aeruginosa mutant cells: scale-up at bench-scale bioreactor level. Turkish J Biol 37:392–404.  https://doi.org/10.3906/biy-1209-19CrossRefGoogle Scholar
  13. Bousková A (2010) Solve your nitrogen problems with LentiKats. Pollut Solut 3:4–5Google Scholar
  14. Braccini I, Pérez S (2001) Molecular basis of Ca2+ -induced gelation in alginates and pectins: The egg-box model revisited. Biomacromol 2:1089–1096.  https://doi.org/10.1021/bm010008gCrossRefGoogle Scholar
  15. Cechovská L, Mrátkota J, Bousková A, Stlou (2009) Intenzifikace cistíren pomocí biotechnologie Lentikats—provozní výsledky. Ekotechnika, pp 38–40Google Scholar
  16. Chandorkar V, Gomashe AV, Parlewar S (2014) Production of lipase by immobilized cells of A. niger. Int J Curr Microbiol Appl Sci 3:703–707Google Scholar
  17. Chen J-P, Lin G-H (2010) Optimization of biodiesel production catalyzed by fungus cells immobilized in fibrous supports. Appl Biochem Biotechnol 161:181–194.  https://doi.org/10.1007/s12010-009-8776-8CrossRefPubMedGoogle Scholar
  18. Chen X-H, Wang X-T, Lou W-Y et al (2012) Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling. Microb Cell Fact 11:119.  https://doi.org/10.1186/1475-2859-11-119CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chibata I, Tosa T, Sato T (1974a) Japan Kokai. p 189Google Scholar
  20. Chibata I, Tosa T, Sato T (1974b) Immobilized aspartase-containing microbial cells: preparation and enzymatic properties. Appl Microbiol 27:878–885PubMedPubMedCentralGoogle Scholar
  21. Covizzi LG, Giese EC, Gomes E et al (2007) Imobilização de células microbianas e suas aplicações biotecnológicas Immobilization of microbial cells and their biotechnological applications. Semin Ciências Exatas e Tecnológicas 28:143–160CrossRefGoogle Scholar
  22. D’Orazio P (2011) Biosensors in clinical chemistry—2011 update. Clin Chim Acta 412:1749–1761.  https://doi.org/10.1016/j.cca.2011.06.025CrossRefPubMedGoogle Scholar
  23. Darah I, Nisha M, Lim S-H (2015) Polygalacturonase production by calcium alginate immobilized Enterobacter aerogenes NBO2 cells. Appl Biochem Biotechnol 175:2629–2636.  https://doi.org/10.1007/s12010-014-1447-4CrossRefPubMedGoogle Scholar
  24. De Vos P, Lazarjani HA, Poncelet D, Faas MM (2014) Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 67–68:15–34.  https://doi.org/10.1016/j.addr.2013.11.005CrossRefPubMedGoogle Scholar
  25. Demirbas A (2008) Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers Manag 49:125–130.  https://doi.org/10.1016/j.enconman.2007.05.002CrossRefGoogle Scholar
  26. Desimone MF, Alvarez GS, Foglia ML, Diaz LE (2009) Development of sol-gel hybrid materials for whole cell immobilization. Recent Pat Biotechnol 3:55–60.  https://doi.org/10.2174/187220809787172605CrossRefPubMedGoogle Scholar
  27. Duarte JC, Rodrigues JAR, Moran PJS et al (2013) Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express 3:31.  https://doi.org/10.1186/2191-0855-3-31CrossRefPubMedPubMedCentralGoogle Scholar
  28. Duckworth M, Yaphe W (1971) The structure of agar: Part I. Fractionation of a complex mixture of polysaccharides. Carbohydr Res 16:189–197.  https://doi.org/10.1016/S0008-6215(00)86113-3CrossRefGoogle Scholar
  29. Emregul E (2006) Polyacrylamide—gelatine carrier system used for invertase immobilization. Food Chem 97:591–597.  https://doi.org/10.1016/j.foodchem.2005.05.017CrossRefGoogle Scholar
  30. Fang S, Chang J, Hwang YLE et al (2016) Immobilization of α-amylase from Exiguobacterium sp. DAU5 on chitosan and chitosan-carbon bead: its properties. J Appl Biol Chem 59:75–81.  https://doi.org/10.3839/jabc.2016.014CrossRefGoogle Scholar
  31. Feng Q, Wang Q, Tang B et al (2013) Immobilization of catalases on amidoxime polyacrylonitrile nanofibrous membranes. Polym Int 62:251–256.  https://doi.org/10.1002/pi.4293CrossRefGoogle Scholar
  32. Fernandes P, Marques MPC, Carvalho F, Cabral JMS (2009) A simple method for biocatalyst immobilization using PVA-based hydrogel particles. J Chem Technol Biotechnol 561–564.  https://doi.org/10.1002/jctb.2080
  33. Fukuda H, Hama S, Tamalampudi S, Noda H (2008) Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol 26:668–673.  https://doi.org/10.1016/j.tibtech.2008.08.001CrossRefPubMedGoogle Scholar
  34. Ganesan D, Thangavelu V, Rajendran A (2011) Statistical optimisation of methanolysis of jatropha oil using immobilised R. oryzae cells in n-hexane system. Int J Environ Stud 68:31–42.  https://doi.org/10.1080/00207233.2010.539422CrossRefGoogle Scholar
  35. Ghosh G, Bachas LG, Anderson KW (2008) Biosensor incorporating cell barrier architectures on ion selective electrodes for early screening of cancer. Anal Bioanal Chem 391:2783–2791.  https://doi.org/10.1007/s00216-008-2192-8CrossRefPubMedGoogle Scholar
  36. Górecka E, Jastrzębska M (2011) Immobilization techniques and biopolymer carriers-a review. Biotechnol Food Sci 75:27–34Google Scholar
  37. Hama S, Ogino C, Kondo A (2015) Enzymatic synthesis and modification of structured phospholipids: recent advances in enzyme preparation and biocatalytic processes. Appl Microbiol Biotechnol 99:7879–7891.  https://doi.org/10.1007/s00253-015-6845-1CrossRefPubMedGoogle Scholar
  38. Hama S, Yamaji H, Fukumizu T et al (2007) Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 34:273–278.  https://doi.org/10.1016/j.bej.2006.12.013CrossRefGoogle Scholar
  39. Hama S, Yamaji H, Kaieda M et al (2004) Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochem Eng J 21:155–160.  https://doi.org/10.1016/j.bej.2004.05.009CrossRefGoogle Scholar
  40. Hattori T, Furusaka C (1959) Chemical Activities of E. coli Adsorbed on a Resin, Dowex-I. Nature 184:1566–1567.  https://doi.org/10.1038/1841566a0
  41. Hemachander C, Bose N, Puvanakrishnan R (2001) Whole cell immobilization of R. pickettii for lipase production. Process Biochem 36:629–633.  https://doi.org/10.1016/S0032-9592(00)00256-9CrossRefGoogle Scholar
  42. Hsuanyu Y (2004) Enzyme immobilization. In: Bisen PS (ed) Laboratory protocols in applied life sciencesGoogle Scholar
  43. Huang D, Zhou H, Lin L (2012) Biodiesel: an alternative to conventional fuel. Energy Procedia 16:1874–1885.  https://doi.org/10.1016/j.egypro.2012.01.287CrossRefGoogle Scholar
  44. IUPAC (1997) Compendium of Chemical Terminology, 2nd edn. Blackwell Scientific PublicationsGoogle Scholar
  45. Jha SK, Kanungo M, Nath A, D’Souza SF (2009) Entrapment of live microbial cells in electropolymerized polyaniline and their use as urea biosensor. Biosens Bioelectron 24:2637–2642.  https://doi.org/10.1016/j.bios.2009.01.024CrossRefPubMedGoogle Scholar
  46. Kamble AL, Banoth L (2013) Nitrile hydratase of Rhodococcus erythropolis: characterization of the enzyme and the use of whole cells for biotransformation of nitriles. Biotech 3:319–330.  https://doi.org/10.1007/s13205-012-0104-2CrossRefGoogle Scholar
  47. Kara F, Demirel G, Tümtürk H (2006) Applications of chitosan-alginate polyelectrolyte complexes and interpenetrating polymer networks of poly (acrylamide-co-acrylic acid)/kappa-carrageenan as immobilization supports of enzyme. Bioprocess Biosyst Eng 29:207–211CrossRefPubMedGoogle Scholar
  48. Kim C, Seo J, Kang D, Cha H (2014) Engineered whole-cell biocatalyst-based detoxification and detection of neurotoxic organophosphate compounds. Biotechnol Adv 32:652–662.  https://doi.org/10.1016/j.biotechadv.2014.04.010CrossRefPubMedGoogle Scholar
  49. Kitova A, Reshetilov A, Ponamoreva O, Leathers T (2010) Microbial Biosensors for Selective Detection of DisaccharidesGoogle Scholar
  50. Kras V, Stloukal R, Rosenberg M, Rebro M (2016) Immobilization of cells and enzymes to LentiKats®. Appl Microbiol Biotechnol 100:2535–2553.  https://doi.org/10.1007/s00253-016-7283-4CrossRefGoogle Scholar
  51. Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8.  https://doi.org/10.1007/s002530051129CrossRefPubMedGoogle Scholar
  52. Kumakura M, Tamada M, Kasai N, Kaestu I (1989) Enhancement of cellulase production by immobilization of Trichoderma reesei cells 33:1358–1362.  https://doi.org/10.1002/bit.260331021CrossRefGoogle Scholar
  53. Kumar S, Dwevedi A, Kayastha AM (2009) Immobilization of soybean (Glycine max) urease on alginate and chitosan beads showing improved stability: analytical applications. J Mol Catal B Enzym 58:138–145.  https://doi.org/10.1016/j.molcatb.2008.12.006CrossRefGoogle Scholar
  54. Kuo C, Liu Y, Chang CJ et al (2012) Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr Polym 87:2538–2545.  https://doi.org/10.1016/j.carbpol.2011.11.026CrossRefGoogle Scholar
  55. Lahiri P (2015) Development of the optimal conditions for alpha-amylase immobilization. Int J Sci Res 4:500–502Google Scholar
  56. Lalou S, Mantzouridou F, Paraskevopoulou A et al (2013) Bioflavour production from orange peel hydrolysate using immobilized S. cerevisiae. Appl Microbiol Biotechnol 97:9397–9407.  https://doi.org/10.1007/s00253-013-5181-6CrossRefPubMedGoogle Scholar
  57. Léonard A, Dandoy P, Danloy E et al (2011) Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy. Chem Soc Rev 40:860–885.  https://doi.org/10.1039/c0cs00024hCrossRefPubMedGoogle Scholar
  58. Li W, Du W, Liu D (2007a) Optimization of whole cell-catalyzed methanolysis of soybean oil for biodiesel production using response surface methodology. J Mol Catal B Enzym 45:122–127.  https://doi.org/10.1016/j.molcatb.2007.01.002CrossRefGoogle Scholar
  59. Li W, Du W, Liu D (2007b) R. oryzae IFO 4697 whole cell catalyzed methanolysis of crude and acidified rapeseed oils for biodiesel production in tert-butanol system. Process Biochem 42:1481–1485.  https://doi.org/10.1016/j.procbio.2007.05.015CrossRefGoogle Scholar
  60. Li W, Du W, Liu D (2008) Rhizopus oryzae Whole-cell-catalyzed biodiesel production from oleic acid in tert-butanol medium. Energy Fuels 22:155–158.  https://doi.org/10.1021/ef700624vCrossRefGoogle Scholar
  61. Lin CW, Wu CH, Huang WT, Tsai SL (2015) Evaluation of different cell-immobilization strategies for simultaneous distillery wastewater treatment and electricity generation in microbial fuel cells. Fuel 144:1–8.  https://doi.org/10.1016/j.fuel.2014.12.009CrossRefGoogle Scholar
  62. Liu Q, Wang P (2010) Cell-based biosensors: principles and applications. Artech HouseGoogle Scholar
  63. Lozinsky VI, Galaev IY, Plieva FM et al (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451.  https://doi.org/10.1016/j.tibtech.2003.08.002CrossRefPubMedGoogle Scholar
  64. Markets and Markets (2015) Natural food colors & flavors market by food color type, food flavor type, application & by region—global forecast to 2020Google Scholar
  65. Martins SCS, Martins CM, Fiúza LMCG, Santaella ST (2013) Immobilization of microbial cells: a promising tool for treatment of toxic pollutants in industrial wastewater. African J Biotechnol 12:4412–4418.  https://doi.org/10.5897/AJB12.2677CrossRefGoogle Scholar
  66. Matsumoto T, Fukuda H, Ueda M et al (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microbiol 68:4517–4522.  https://doi.org/10.1128/AEM.68.9.4517-4522.2002CrossRefPubMedPubMedCentralGoogle Scholar
  67. Matsumoto T, Takahashi S, Kaieda M et al (2001) Yeast whole-cell biocatalyst constructed by intracellular overproduction of R. oryzae lipase is applicable to biodiesel fuel production. Appl Microbiol Biotechnol 57:515–520.  https://doi.org/10.1007/s002530100733CrossRefPubMedGoogle Scholar
  68. Mattiasson B, Hahn-Hägerdal B (1982) Microenvironmental effects on metabolic behaviour of immobilized cells a hypothesis. Eur J Appl Microbiol Biotechnol 16:52–55.  https://doi.org/10.1007/BF01008243CrossRefGoogle Scholar
  69. Mendes AA, De Oliveira PC, De Castro HF, Giordano RDLC (2011) Aplicação de quitosana como suporte para a imobilização de enzimas de interesse industrial. Quim Nova 34:831–840.  https://doi.org/10.1590/S0100-40422011000500019CrossRefGoogle Scholar
  70. Meunier CF, Le A, Le A (2010) Living hybrid materials capable of energy conversion and CO2 assimilation. Chem Commun 46:3843–3859.  https://doi.org/10.1039/c001799jCrossRefGoogle Scholar
  71. Mi F, Sung HW, Shyu SS (2002) Drug release from chitosan–alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydr Polym 48:61–72.  https://doi.org/10.1016/S0144-8617(01)00212-0CrossRefGoogle Scholar
  72. Milessi TSS, Kopp W, Rojas MJ et al (2015) Immobilization and stabilization of an endoxylanase from Bacillus subtilis (XynA) for xylooligosaccharides (XOs) production. Catal Today 259:130–139.  https://doi.org/10.1016/j.cattod.2015.05.032CrossRefGoogle Scholar
  73. Mrudula S, Shyam N (2012) Immobilization of bacillus megaterium mtcc 2444 by caalginate entrapment method for enhanced alkaline protease production. Brazilian Arch Biol Technol 55:135–144.  https://doi.org/10.1590/S1516-89132012000100017CrossRefGoogle Scholar
  74. Müller-Maatsch J, Bencivenni M, Caligiani A et al (2016) Pectin content and composition from different food waste streams. Food Chem 201:37–45.  https://doi.org/10.1016/j.foodchem.2016.01.012CrossRefPubMedGoogle Scholar
  75. Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell, Tissue Organ Cult 118:1–16.  https://doi.org/10.1007/s11240-014-0467-7CrossRefGoogle Scholar
  76. Nedovi V, Gibson B, Mantzouridou TF et al (2015) Aroma formation by immobilized yeast cells in fermentation processes. Yeast 32:173–216.  https://doi.org/10.1002/yeaCrossRefGoogle Scholar
  77. Nedovic V, Willaert R (eds) (2004) Fundamentals of cell immobilisation biotechnology, 1st edn. Springer Science & Business MediaGoogle Scholar
  78. Niu X, Wang Z, Li Y et al (2013) “Fish-in-net”, a novel method for cell immobilization of Z. mobilis. PLoS ONE 8:e79569.  https://doi.org/10.1371/journal.pone.0079569CrossRefPubMedPubMedCentralGoogle Scholar
  79. Omar SH, Honecker S, Rehm H-J (1992) A comparative study on the formation of citric acid and polyols and on morphological changes of three strains of free and immobilized A. niger. Appl Microbiol Biotechnol 36:518–524.  https://doi.org/10.1007/BF00170195CrossRefGoogle Scholar
  80. Orive G, Hernández RM, Gascón AR, Pedraz JL (2006) Immobilization of enzymes and cells. In: Guisan JM (ed) Humana Press. Totowa, NJ, pp 345–355Google Scholar
  81. Pajic-lijakovic I, Levic S, Nedovic V, Bugarski B (2015) Biointerface dynamics—multi scale modeling considerations. Colloids Surf B Biointerfaces 132:236–245.  https://doi.org/10.1016/j.colsurfb.2015.05.013CrossRefPubMedGoogle Scholar
  82. Potvorova N, Vakuliuk P, Furtat I, Burban A (2012) Polyacrylonitrile membranes with antibacterial properties. Procedia Eng 44:1594–1595.  https://doi.org/10.1016/j.proeng.2012.08.879CrossRefGoogle Scholar
  83. Pradella JGDC (2001) Reatores com células imobilizadas. In: Schmidell W, Lima U de A, Aquarone E, Borzani W (eds) Biotecnologia Industrial. Edgard Blücher LTDAGoogle Scholar
  84. Prasad KK, Mohan SV, Bhaskar YV et al (2005) Laccase production using P. ostreatus 1804 immobilized on PUF cubes in batch and packed bed reactors: influence of culture conditions. J Microbiol 43:301–307PubMedGoogle Scholar
  85. Qi M, Gu Y, Sakata N et al (2004) PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomater 25:5885–5892.  https://doi.org/10.1016/j.biomaterials.2004.01.050CrossRefGoogle Scholar
  86. Ramakrishna SV, Prakasham RS (1999) Microbial fermentations with immobilized cells. Curr Sci 77:1–22Google Scholar
  87. Rehman HU, Aman A, Zohra RR et al (2014) Immobilization of pectin degrading enzyme from B. licheniformis KIBGE IB-21 using agar-agar as a support. Carbohydr Polym 102:622–626.  https://doi.org/10.1016/j.carbpol.2013.11.073CrossRefPubMedGoogle Scholar
  88. Robles-Medina A, González-Moreno PA, Esteban-Cerdán L, Molina-Grima E (2009) Biocatalysis: Towards ever greener biodiesel production. Biotechnol Adv 27:398–408.  https://doi.org/10.1016/j.biotechadv.2008.10.008CrossRefPubMedGoogle Scholar
  89. Schlieker M, Vorlop K (2006) A novel immobilization method for entrapment Lentikats. In: Guisan J (ed) Immobilization of enzymes and cells, 2nd edn. Humana Press, pp 333–343Google Scholar
  90. Seifert DB, Phillips JA (1997) Production of small, monodispersed alginate beads for cell immobilization. Biotechnol Prog 13:562–568.  https://doi.org/10.1021/bp9700723CrossRefGoogle Scholar
  91. Shah P, Sridevi N, Prabhune A, Ramaswamy V (2008) Structural features of Penicillin acylase adsorption on APTES functionalized SBA-15. Microporous Mesoporous Mater 116:157–165.  https://doi.org/10.1016/j.micromeso.2008.03.030CrossRefGoogle Scholar
  92. Shing WL, Heng LY, Surif S (2013) Performance of a cyanobacteria whole cell-based fluorescence biosensor for heavy metal and pesticide detection. Sens 13:6394–6404.  https://doi.org/10.3390/s130506394CrossRefGoogle Scholar
  93. Shriver-Lake LC, Gammeter WB, Bang SS, Pazirandeh M (2002) Covalent binding of genetically engineered microorganisms to porous glass beads. Anal Chim Acta 470:71–78.  https://doi.org/10.1016/S0003-2670(02)00540-8CrossRefGoogle Scholar
  94. Siddiqui M, Siddiqui N, Varma R (2016) Enhanced production of cellulolytic enzymes from immobilized cells of A. niger. Int J Pure Appl Biosci 4:109–114.  https://doi.org/10.18782/2320-7051.2185CrossRefGoogle Scholar
  95. Smutok O, Dmytruk K, Gonchar M et al (2007) Permeabilized cells of flavocytochrome b2 over-producing recombinant yeast hansenula polymorpha as biological recognition element in amperometric lactate biosensors. Biosens Bioelectron 23:599–605.  https://doi.org/10.1016/j.bios.2007.06.021CrossRefPubMedGoogle Scholar
  96. Stoilova O, Manolova N, Gabrovska K et al (2010) Electrospun polyacrylonitrile nanofibrous membranes tailored for acetylcholinesterase immobilization. J Bioact Compat Polym 25:40–57.  https://doi.org/10.1177/0883911509353680CrossRefGoogle Scholar
  97. Struss A, Pasini P, Ensor CM et al (2010) Paper strip whole cell biosensors: a portable test for the semiquantitative detection of bacterial quorum signaling molecules. Anal Chem 82:4457–4463.  https://doi.org/10.1021/ac100231aCrossRefPubMedGoogle Scholar
  98. Sührer I, Langemann T, Lubitz W et al (2015) A novel one-step expression and immobilization method for the production of biocatalytic preparations. Microb Cell Fact 14:1–9.  https://doi.org/10.1186/s12934-015-0371-9CrossRefGoogle Scholar
  99. Tamalampudi S, Talukder MR, Hama S et al (2008) Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem Eng J 39:185–189.  https://doi.org/10.1016/j.bej.2007.09.002CrossRefGoogle Scholar
  100. Tanriseven A, Doǧan Ş (2002) A novel method for the immobilization of β-galactosidase. Process Biochem 38:27–30.  https://doi.org/10.1016/S0032-9592(02)00049-3CrossRefGoogle Scholar
  101. Tataridis P, Ntagas P, Voulgaris I, Nerantzis E (2005) Production of sparkling wine with immobilized yeast fermentation. Electron J Sci Technol 1:1–21Google Scholar
  102. Taylor P, Lai Y, Thirumavalavan M, Lee J (2010) Effective adsorption of heavy metal ions (Cu, Pb, Zn) from aqueous solution by immobilization of adsorbents on Ca-alginate beads. Toxicol Environ Chem 2248:37–41.  https://doi.org/10.1080/02772240903057382CrossRefGoogle Scholar
  103. Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  104. Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of Chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRefGoogle Scholar
  105. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Macromolecules 72:834–847.  https://doi.org/10.1016/j.ijbiomac.2014.09.044CrossRefGoogle Scholar
  106. Thu B, Smidsrød O, Skjak-Brk G (1996) Alginate gels—some structure-function correlations relevant to their use as immobilization matrix for cells. Prog Biotechnol 11:19–30.  https://doi.org/10.1016/S0921-0423(96)80004-9CrossRefGoogle Scholar
  107. Trelles JA, Rivero CW (2013) Whole cell entrapment techniques. Methods Mol Biol 1051:365–374.  https://doi.org/10.1007/978-1-62703-550-7_24CrossRefPubMedGoogle Scholar
  108. Uludag H, De Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42:29–64.  https://doi.org/10.1016/S0169-409X(00)00053-3CrossRefPubMedGoogle Scholar
  109. Van De Velde F, Lourenço ND, Pinheiro HM, Bakker M (2002) Carrageenan: a food-grade and biocompatible support for immobilisation techniques. Adv Synth Catal 344:815–835. https://doi.org/10.1002/1615-4169(200209)344:8<815:AID-ADSC815>3.0.CO;2-HCrossRefGoogle Scholar
  110. Vilela A, Schuller D, Mendes-Faia A, Côrte-Real M (2013) Reduction of volatile acidity of acidic wines by immobilized S. cerevisiae cells. Appl Microbiol Biotechnol 97:4991–5000.  https://doi.org/10.1007/s00253-013-4719-yCrossRefPubMedGoogle Scholar
  111. Vrana NE, O’Grady A, Kay E et al (2009) Cell encapsulation within PVA-based hydrogels via freeze-thawing: a one-step scaffold formation and cell storage technique. J Tissue Eng Regen Med 3:524–531.  https://doi.org/10.1002/term.193CrossRefGoogle Scholar
  112. Wilkowska A, Kregiel D, Guneser O, Karagul Yuceer Y (2015) Growth and by-product profiles of K. marxianus cells immobilized in foamed alginate. Yeast 32:217–225.  https://doi.org/10.1002/yea.3044CrossRefPubMedGoogle Scholar
  113. Willaert R, Nedovic VA (2006) Primary beer fermentation by immobilised yeast—a review on flavour formation and control strategies. J Chem Technol Biotechnol 81:1353–1367.  https://doi.org/10.1002/jctb.1582CrossRefGoogle Scholar
  114. Xiao M, Mathew S, Obbard JP (2010) A newly isolated fungal strain used as whole-cell biocatalyst for biodiesel production from palm oil. GCB Bioenergy 2:45–51.  https://doi.org/10.1111/j.1757-1707.2010.01038.xCrossRefGoogle Scholar
  115. Xie W, Wang J (2011) Immobilized lipase on magnetic chitosan microspheres for trans esterification of soybean oil. Biomass Bioenerg 36:373–380.  https://doi.org/10.1016/j.biombioe.2011.11.006CrossRefGoogle Scholar
  116. Yang LJ, Ou YC (2005) The micro patterning of glutaraldehyde (GA)-crosslinked gelatin and its application to cell-culture. Lab Chip 5:979–984.  https://doi.org/10.1039/b505193bCrossRefPubMedGoogle Scholar
  117. Yasumoto K, Iwami K, Mitsuda H (1974) Enzymatic formation of Shi-Ta-ke aroma from non-volatile precursor(s)—lenthionine from lentinic acid. In: Proceedings of the 9th international scientific congress on the cultivation of E. Fungi. Tokyo, pp 371–383Google Scholar
  118. Zajkoska P, Rebro M, Rosenberg M (2013) Biocatalysis with immobilized E. coli. Appl Environ Microbiol 97:1441–1455.  https://doi.org/10.1007/s00253-012-4651-6CrossRefGoogle Scholar
  119. Zhang D, Yuwen L, Peng L (2013) Parameters affecting the performance of immobilized enzyme. J Chem 2013:1–7.  https://doi.org/10.1155/2013/946248CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Gustavo Pagotto Borin
    • 1
    • 2
  • Ricardo Rodrigues de Melo
    • 1
    • 3
  • Elaine Crespim
    • 1
  • Helia Harumi Sato
    • 3
  • Fabiano Jares Contesini
    • 1
    • 2
  1. 1.Laboratório Nacional de Ciência E Tecnologia Do Bioetanol (CTBE)Centro Nacional de Pesquisa Em Energia E Materiais (CNPEM)CampinasBrazil
  2. 2.Institute of BiologyUniversity of CampinasUnicampBrazil
  3. 3.College of Food EngineeringUniversity of CampinasCampinasBrazil

Personalised recommendations