Hydrogels pp 145-173 | Cite as

Preparation, Properties and Application of Hydrogels: A Review

  • Sumit MishraEmail author
  • Priti Rani
  • Gautam Sen
  • Kartick Prasad Dey
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)


Hydrogels are primarily synthesized to retain large amounts of aqueous solution. Depending upon modes of synthesis, the hydrogel materials develop various types of network structure. Recently, popular techniques have been developed for synthesis of hydrogels in the presence of crosslinking agents or multifunctional co-monomer which acts as a crosslinker. It can be categorized according to synthesis techniques, bio-degradability, response to environment and their intended applications. These applications may vary from water retention, conditioner to different aspects of biomedical applications and tissue engineering. Hydrogels contain a number of functional groups which may be utilized as such or modified and used to suit our requirements. In this review article, we have focused on the available synthesis techniques of hydrogels along with their inevitable properties and applications.


Hydrogel Radical polymerization Biomedical application Tissue engineering 


  1. Abebe DG, Fujiwara T (2012) Controlled thermoresponsive hydrogels by stereocomplexed PLA-PEG-PLA prepared via hybrid micelles of premixed copolymers with different PEG lengths. Biomacromol 13:1828–1836CrossRefGoogle Scholar
  2. Abraham GA, de Queiroz AAA, San RJS (2001) Hydrophilic hybrid IPNs of segmented polyurethanes and copolymers of vinyl pyrrolidone for applications in medicine. Biomaterials 22:1971–1985CrossRefPubMedGoogle Scholar
  3. Aimetti AA, Machen AJ, Anseth KS (2009) Poly (ethylene glycol) hydrogels formed by thiolene photopolymerization for enzyme-responsive protein delivery. Biomaterials 30(30):6048–6054Google Scholar
  4. Alvarez LC, Concheiro A, Dubovik AS, Grinberg NV, Burova TV, Grinberg VY (2005) Temperature-sensitive chitosan-poly N-isopropylacrylamide interpenetrated networks with enhanced loading capacity and controlled release properties. J Control Release 102:629–641CrossRefGoogle Scholar
  5. Amiji M (1997) Gelatin-poly(ethylene oxide) semi interpenetrating polymer network with pH-sensitive swelling and enzyme-degradable properties for oral drug delivery. Drug Dev Ind Pharm 23:575–582CrossRefGoogle Scholar
  6. Aqua Source Inc (1993) United State Patent US 5185024Google Scholar
  7. Arthur R, Barry JJ, Sahatjian R (2006) US Patent US706690Google Scholar
  8. Benamer S, Mahlous M, Boukrif A, Mansouri B, Youcef SL (2006) Synthesis and characterisation of hydrogels based on poly(vinyl pyrrolidone). Nucl Instrum Methods Phy Res Section B: Beam Interact Mater Atoms 248(2):284–290Google Scholar
  9. Bindu SM, Ashok V, Chatterjee A (2012) Review article as a review on hydrogels as drug delivery in the pharmaceutical field. Int J Pharm Chem Sci 1:642–661Google Scholar
  10. Boonkaew B, Kempf M, Kimble R, Supaphol P, Cuttle L (2014a) Antimicrobial efficacy of a novel silver hydrogel dressing compared to two common silver burn wound dressings: Acticoat™ and PolyMem Silver®. Burns 40:89–96CrossRefPubMedGoogle Scholar
  11. Boonkaew B, Barber PM, Rengpipat S, Supaphol P, Kempf M, He J et al (2014b) Development and characterization of a novel antimicrobial, sterile hydrogel dressing for burn wounds: single-step production with gamma irradiation creates silver nanoparticles and radical polymerization. J Pharm Sci 103:3244–3253CrossRefPubMedGoogle Scholar
  12. Boppana R, Kulkarni RV, Mutalik SS, Biswanath S (2010) Interpenetrating network hydrogel beads of carboxymethylcellulose and egg albumin for controlled release of lipid lowering drug. J Microencap 27:337–344CrossRefGoogle Scholar
  13. Bortolin A, Serafim AR, Aouada FA, Mattoso LH, Ribeiro C (2016) Macro- and micronutrient simultaneous slow release from highly swellable nanocomposite hydrogels. J Agric Food Chem 64(16):3133–3140Google Scholar
  14. Brandt KA, Goldman SA, Inglin TA, Procter and Gamble Co (1987) Hydrogel-forming polymer compositions for use in absorbent structures. U.S. Patent 4,654,039Google Scholar
  15. Brown LR, Edelman ER, Fischel‐Ghodsian F, Langer R (1996) Characterization of glucose-mediated insulin release from implantable polymers. J Pharm Sci 85 (12):1341–1345Google Scholar
  16. Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photo initiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11:439–457CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bullock AJ, Pickavance P, Haddow DB, Rimmer S, MacNeil S (2010) Development of a calcium-chelating hydrogel for treatment of superficial burns and scalds. Regen Med 5:55–64CrossRefPubMedGoogle Scholar
  18. Burd A (2007) Evaluating the use of hydrogel sheet dressings in comprehensive burn wound care. Ostomy Wound Manage 53:52–62PubMedGoogle Scholar
  19. Buwalda SJ, Boere KW, Dijkstra PJ, Feijen J, Vermonden T (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 190:254–273CrossRefPubMedGoogle Scholar
  20. Cartmell JV, Sturtevant WR, Bausmith WE, Wolf ML (1995) US Patent US5423737Google Scholar
  21. Chakavala SR, Patel NG, Pate NV, Thakkar VT, Patel KV, Gandhi TR (2012) Development and in vivo evaluation of silver sulfadiazine loaded hydrogel consisting of polyvinyl alcohol and chitosan for severe burns. J Pharm Bioallied Sci 4:S54–S56Google Scholar
  22. Chang C, Duan B, Cai J, Zhang L (2010) Hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRefGoogle Scholar
  23. Chapekar MS (2000) J Biomed Mater Res 53:617–620CrossRefPubMedGoogle Scholar
  24. Chivukula P, Dusek K, Wang D, Duskova SM, Kopeckova P, Kopecek J (2006) Synthesis and characterization of novel aromatic azo bond-containing pH-sensitive and hydrolytically cleavable IPN hydrogels. Biomaterials 27:1140–1151CrossRefPubMedGoogle Scholar
  25. Christensen L, Breiting V, Vuust J, Hogdall E (2006) Adverse reactions following injection with a permanent facial filler polyacrylamide hydrogel (aquamid): causes and treatment. Eur J Plast Surg 28:464–471CrossRefGoogle Scholar
  26. Chung HJ, Lee Y, Park TG (2008) Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery. J Control Release 127:22–30CrossRefPubMedGoogle Scholar
  27. Coats TJ, Edwards C, Newton R, Staun E (2002) The effect of gel burn dressings on skin temperature. Emerg Med J 19:224–225CrossRefPubMedPubMedCentralGoogle Scholar
  28. Cook JP, Goodall GW, Khutoryanskaya OV, Khutoryanskiy VV (2012) Microwave‐assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions. Macromol Rapid Commun 33:332–336CrossRefPubMedGoogle Scholar
  29. Cretu A, Gattin R, Brachais L, Barbier-Baudry D (2004) Synthesis and degradation of poly(2-hydroxyethyl methacrylate)-graft-poly (ε-caprolactone) copolymers. Polym Degrad Stab 83:399–403CrossRefGoogle Scholar
  30. Cui F, Li G, Huang J, Zhang J, Lu M, Lu W (2011) Development of chitosan-collagen hydrogel incorporated with lysostaphin (CCHL) burn dressing with anti-methicillin-resistant Staphylococcus aureus and promotion wound healing properties. Drug Deliv 18:173–180CrossRefPubMedGoogle Scholar
  31. Cuttle L, Pearn J, McMillan JR, Kimble RM (2009) A review of first aid treatments for burn injuries. Burns 35:768–775CrossRefPubMedGoogle Scholar
  32. Damodaran S, Hwang DC (1998) United State Patent US 5847089Google Scholar
  33. Derwent JJK, Mieler WF (2008) Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye. Trans Am Ophthalmol Soc 106:206–214Google Scholar
  34. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351Google Scholar
  35. Ferreira L (2000) Evaluation of poly(2-hydroxyethyl methacrylate) gels as drug delivery systems at different pH values. Int J Pharm 194:169–180CrossRefPubMedGoogle Scholar
  36. Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10:51–61CrossRefGoogle Scholar
  37. Gaylord NG (1974) US Patent US3808178Google Scholar
  38. Gemeinhart AR, Chen J, Park H, Park K (2000) pH sensitive of fast responsive superporous hydrogels. J Biomater Sci Plymer Edn 11(12):1371–1380CrossRefGoogle Scholar
  39. Ghadiri M, Chrzanowski W, Rohanizadeh R (2014) Antibiotic eluting clay mineral (Laponite®) for wound healing application: an in vitro study. J Mater Sci Mater Med 25(11):2513–2526Google Scholar
  40. Gils PS, Ray D, Sahoo PK (2010) Designing of silver nanoparticles in gum arabic based semi-IPN hydrogel. Int J Biol Macromol 46:237–244CrossRefPubMedGoogle Scholar
  41. Gong CY, Shi S, Dong PW, Kan B, Gou ML, Wang XH (2009) Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm 365:89–99CrossRefPubMedGoogle Scholar
  42. Grippaudo FR, Carini L, Baldini R (2010) Procutase versus 1% silver sulphadiazine in the treatment of minor burns. Burns 36:871–875CrossRefPubMedGoogle Scholar
  43. Grodzinski J (2009) Polymeric gels and hydrogels for biomedical and pharmaceutical application. Polym Adv Technol 21:27–47Google Scholar
  44. Gunasekaran S, Chai WTC (2006) Swelling of pH-sensitive chitosan-poly(vinyl alcohol) hydrogels. J Appl Polym Sci 102:4665–4671CrossRefGoogle Scholar
  45. Hendriks BHW, Deladi S, Kurt R, Suijver JF (2012) United State Patent US 8244078Google Scholar
  46. Huggins ML (1942) Some properties of solutions of long-chain compounds. J Phys Chem 46:151–158CrossRefGoogle Scholar
  47. Iizawa T, Taketa H, Maruta M, Ishido T, Gotoh T, Sakohara S (2007) Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci 104:842–850CrossRefGoogle Scholar
  48. Iordanov VP, Krijnsen HC, Van Bruggen MPB, Janner AM, Kurt R, Koninklijke Philips NV (2014) Hydrogel based device for detecting an environmental state. United State Patent 8,840,839Google Scholar
  49. Irani M, Ismail H, Ahmad Z, Fan M (2015) Synthesis of linear low density polyethylene-g-poly(acrylic acid)-co starch/organomontmorillonite hydrogel composite as an adsorbent for removal of Pb(II) from aqueous solutions. J Environ Sci 27:9–20CrossRefGoogle Scholar
  50. Jen AC, Wake MC, Mikos AG (1996) Review: hydrogels for cell immobilization. Biotechnol Bioeng 50:357–364CrossRefPubMedGoogle Scholar
  51. Johannsmann D, Bunsow J (2008) Electrochemically produced responsive hydrogel films: influence of added salt on thickness and morphology. J Colloid Interface Sci 326:61–65CrossRefPubMedGoogle Scholar
  52. Joint I, Mühling M, Querellou J (2010) Culturing marine bacteria—an essential prerequisite for biodiscovery. Microb Biotechnol 3:564–575CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ju HK, Kim SY, Kim SJ, Lee YM (2002) pH/temperature-responsive semi-IPN hydrogels composed of alginate and poly(N-isopropylacrylamide). J Appl Polym Sci 83:1128–1139CrossRefGoogle Scholar
  54. Kaneko Y, Yoshida R, Sakai K, Sakurai Y, Okano T (1995) Temperature-responsive shrinking kinetics of poly(N-isopropylacrylamide) copolymer gels with hydrophilic and hydrophobic comonomers. J Membr Sci 101:13–22CrossRefGoogle Scholar
  55. Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, Okano T (1998) Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules 31:6099–6105CrossRefGoogle Scholar
  56. Kellenberger SR (1992) Absorbent products containing hydrogels with ability to swell against pressure. U.S. Patent 5,147,343 issued September 15, 1992Google Scholar
  57. Ketelson HA, Meadows DL, Stone RP (2005) Dynamic wettability properties of a soft contact lens hydrogel. Colloid Surf B. 40:1–9CrossRefGoogle Scholar
  58. Khutoryanskiy VV, Khutoryanskaya OV, Cook JP, Goodall GW (2013) US Patent 0018110Google Scholar
  59. Kiil S, Dam-Johansen K (2003) Controlled drug delivery from swellable hydroxypropylmethyl cellulose matrices: model-based analysis of observed radial front movements. J Control Rel 90:1–21CrossRefGoogle Scholar
  60. Kim B, Peppas NA (2003) Poly(ethylene glycol)-containing hydrogels for oral protein delivery applications. Biomed Microdevices 5:333–341CrossRefGoogle Scholar
  61. Kirakci K, Šícha V, Holub J, Kubà P, Lang K (2014) Luminescent hydrogel particles prepared by self-assembly of Î2-cyclodextrin polymer and octahedral molybdenum cluster complexes. Inorg Chem 53:13012–13018Google Scholar
  62. Kopecek J, Yang J (2009) Peptide directed self assembly of hygrogels. Acta Biomater 5:805–816CrossRefPubMedGoogle Scholar
  63. Kumar HGS, Satish CS, Satish KP (2006) Hydrogels as controlled drug delivery systems synthesis, crosslinking, water and drug transport mechanism. Ind J Pharm Sci 68:133–280CrossRefGoogle Scholar
  64. Kumar PT, Lakshmanan VK, Biswas R, Nair SV, Jayakumar R (2012a) Synthesis and biological evaluation of chitin hydrogel/nano ZnO composite bandage as antibacterial wound dressing. J Biomed Nanotechnol 8:891–900CrossRefPubMedGoogle Scholar
  65. Kumar PT, Lakshmanan VK, Anilkumar TV, Ramya C, Reshmi P, Unnikrishnan AG (2012b) Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 4:2618–2629CrossRefPubMedGoogle Scholar
  66. Ladet S, David L, Domard A (2008) Multi-membrane hydrogels. Nature 452(7183):76–79Google Scholar
  67. Langer R, Vacanti J (1993) Tissue engineering. Science 260:920–926CrossRefGoogle Scholar
  68. Langer R, Peppas NA (2003) Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J 49(12):2990–3006Google Scholar
  69. Lee KY, Mooney DJ (2001) Chem Rev 101:1869–1880CrossRefPubMedGoogle Scholar
  70. Lee SD, Kim BS, Nguyen MK (2013) US Patent US8383153Google Scholar
  71. Li S, Liu X (2008) Synthesis, characterization and evaluation of semi-IPN hydrogels consisted of poly(methacrylic acid) and guar gum for colon-specific drug delivery. Polym Adv Technol 19:371–376CrossRefGoogle Scholar
  72. Li Y, Zhou J (2007) United State Patent US 7304098Google Scholar
  73. Li J, Jiang M, Wu H, Li Y (2009) Addition of modified bentonites in polymer gel formulation of 2,4-D for its controlled release in water and soil. J Agric Food Chem 57:2868–2874CrossRefPubMedGoogle Scholar
  74. Li S, Yajiang Y, Haibing Li, Xiangliang Y, Huibi Xu (2007) pH-responsive semi-interpenetrating networks hydrogels of poly(acrylic acid-acrylamide-methacrylate) and amylose. I. Synthesis and characterization. J Appl Polym Sci 106(6):3792–3799Google Scholar
  75. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910CrossRefPubMedGoogle Scholar
  76. Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Del Rev 58:1379–1408CrossRefGoogle Scholar
  77. Lipatov YS (2002) Polymer blends and interpenetrating polymer networks at the interface with solids. Prog Polym Sci 27:1721–1801CrossRefGoogle Scholar
  78. Liu M, Su H, Tan T (2012) Synthesis and properties of thermo and pH-sensitive poly(N-isopropylacrylamide)/polyaspartic acid IPN hydrogels. Carbohydr Polym 87:2425–2431CrossRefGoogle Scholar
  79. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B: Rev 19(6):485–502Google Scholar
  80. Lowman AM, Morishita M, Nagai T, Peppas NA (1998) US Patent WO1998043615Google Scholar
  81. Lu G, Ling K, Zhao P, Xu Z, Deng C, Zheng H (2010a) A novel in situ-formed hydrogel wound dressing by the photocross-linking of a chitosan derivative. Wound Repair Regen 18:70–79CrossRefPubMedGoogle Scholar
  82. Lu S, Liu M, Ni B, Gao C (2010b) A novel pH- and thermo-sensitive PVP/CMC semi-IPN hydrogel: swelling, phase behavior, and drug release study. J Polym Sci Part B Polym Phys 48:1749–1756CrossRefGoogle Scholar
  83. Lum E, Golebiowski B, Gunn R, Babhoota M, Swarbrick H (2013) Corneal sensitivity with contact lenses of different mechanical properties. Optom Vis Sci 90(9):954–960Google Scholar
  84. Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7:30–40CrossRefGoogle Scholar
  85. Masteikova R, Chalupova Z, Sklubalova Z (2003) Stimuli-sensitive hydrogels in controlled and sustained drug delivery. Medicina 39:19–24PubMedGoogle Scholar
  86. Mather P, Wu J, Ren D, Hou S (2013) US Patent US8431151Google Scholar
  87. Mathur AM, Moorjani SK, Scranton AB (1996) Methods for synthesis of hydrogel networks: a review. J Macromolecular Sci Part C: Polym Rev 36(2):405–430Google Scholar
  88. Matricardi P, Pontoriero M, Coviello T, Casadei MA, Alhaique F (2008) In Situ Cross-Linkable Novel Alginate-Dextran Methacrylate IPN Hydrogels for Biomedical Applications: Mechanical Characterization and Drug Delivery Properties. Biomacromolecules 9(7):2014–2020Google Scholar
  89. Mistry KK, Hussain AW, Beck PH, Palmer DV, Sales BR, Mint A (2013) European Patent EP2646002Google Scholar
  90. Miyaji N, Iwama T, Gotoh M, Maruyama T, Kohda D (2015) European Patent EP2172475Google Scholar
  91. Miyata T, Uragami T, Nakamae K (2002) Biomolecules sensitive hydrogels. Adv Drug Deliv Rev 54:79–98CrossRefPubMedGoogle Scholar
  92. Mohamadnia Z, Zohuriaan-Mehr MJ, Kabiri K, Jamshidi A, Mobedi H (2007) pH-sensitive IPN hydrogel beads of carrageenan-alginate for controlled drug delivery. J Bioact Compat Polym 22:342–356CrossRefGoogle Scholar
  93. Mohd ZR, Abu BZZ, Yusof N, Mohamed MN, Abdullah MN (2012) Gelam (Melaleuca spp.) honey based hydrogel as burn wound dressing. Evid Based Complement Alternat Med 2012:843025Google Scholar
  94. Montoro SR, Medeiros SDF, Alves GM (2014) Chapter 10—nanostructured hydrogels. In: Nanostructured polymer blends. William Andrew, Elsevier, Oxford, pp 325355Google Scholar
  95. Murdan S (2003) Electro-responsive drug delivery from hydrogels. J Control Release 92:1–17CrossRefPubMedGoogle Scholar
  96. Murthy PSK, Murali Mohan Y, Varaprasad K, Sreedhar B, Mohana RK (2008) First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318:217–224CrossRefPubMedGoogle Scholar
  97. Nalampang K, Panjakha R, Molloy R, Tighe BJ (2013) Structural effects in photopolymerized sodium AMPS hydrogels cross-linked with poly(ethylene glycol) diacrylate for use as burn dressings. J Biomater Sci Polym 24:1291–1304CrossRefGoogle Scholar
  98. Natesan S, Zamora DO, Wrice NL, Baer DG, Christy RJ (2013) Bilayer hydrogel with autologous stem cells derived from debrided human burn skin for improved skin regeneration. J Burn Care Res 34:18–30CrossRefPubMedGoogle Scholar
  99. Neefe CW (1984) US Patent US4472327Google Scholar
  100. Nguyen K, West J (2002) Biomaterials. Photopolymerizable hydrogels for tissue engineering applications 23:4307Google Scholar
  101. Nierzwicki W, Prins W (1975) Hydrogels of crosslinked poly(1-glyceryl methacrylate) and poly(2-hydroxypropyl methacrylamide). J Appl Poly Sci 19(7):1885–1892Google Scholar
  102. Oh SB, Choi YK, Cho CS (2003) Thermoplastic hydrogel based on pentablock copolymer consisting of poly(γ-benzyl l-glutamate) and poloxamer. J Appl Polym Sci 88:2649–2656CrossRefGoogle Scholar
  103. Okay O, Ozturk V (2002) Temperature sensitive poly(N-t-butylacrylamide-co-acrylamide) hydrogels: synthesis and swelling behavior. Polymer 43:5017–5026CrossRefGoogle Scholar
  104. Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487CrossRefGoogle Scholar
  105. Oliveira RN, Rouzé R, Quilty B, Alves GG, Soares GD, Thiré RM (2014) Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings. Interface Focus 4:20130049CrossRefPubMedPubMedCentralGoogle Scholar
  106. Omidian H, Qiu Y, Yang S, Kim D, Park H, Park K (2005) Purdue Research Foundation. Hydrogels having enhanced elasticity and mechanical strength properties. U.S. Patent No. 6,960,617Google Scholar
  107. Ossipov DA, Hilborn J (2006) Macromolecules 39:1709CrossRefGoogle Scholar
  108. Pal K, Banthia AK, Majumdar DK (2009) Polymeric hydrogels: characterization and biomedical applications. A mini review. Des Monom Polym 12:197–220Google Scholar
  109. Park K, Shalaby WSW, Park H (1993). Biodegradable hydrogels for drug delivery. TechnomicGoogle Scholar
  110. Peng XW, Zhong LX, Ren JL, Sun RC (2012) Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. J Agric Food Chem 60(15):3909–3916Google Scholar
  111. Peppas N, Bures P (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRefPubMedPubMedCentralGoogle Scholar
  112. Peppas NA, Lowman AM (1999) Hydrogels. In: Mathiowitz E (ed) Encyclopedia of controlled drug delivery. Wiley, New York, pp 397–418Google Scholar
  113. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bio nanotechnology. Adv Mater 18:1345–1360CrossRefGoogle Scholar
  114. Ribeiro MP, Ana E, Daniela S, Patrícia B, Joaquim H, Catarina F, Jorge CS, João PB, Eduardo P, Paula C, Ilídio JC (2009) Development of a new chitosan hydrogel for wound dressing. Wound Repair Regeneration 17(6):817–824Google Scholar
  115. Ribeiro MP, Morgado PI, Miguel SP, Coutinho P, Correia IJ (2013) Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Mater Sci Eng C Mater Biol Appl 33:2958–2966CrossRefPubMedGoogle Scholar
  116. Rosiak J, Ruciska-Rybus A, Pekala W (1989) United State Patent US Patent 4871490Google Scholar
  117. Saleem MA, Azharuddin SK, Ali S, Patil CC (2012) Studies on different chitosan polyelectrolyte complex hydrogel for modified release of diltiazem hydrochlorid. Int J Pharm and Pharm Sci 2(4):64–67Google Scholar
  118. Sannino A, Ambrosio L, Nicolasis L (2012) European Patent EP 2535359Google Scholar
  119. Sawhney A, Pathak C (1994) Adhesion prevention. J Biomed Mat Res 28:831–838CrossRefGoogle Scholar
  120. Sawhney AS, Jarrett P, Bassett M, Blizzard C (2013) US Patent US8409606Google Scholar
  121. Schurz J (1991) Rheology of polymer solutions of the network type. Prog Polym Sci 16:1–53CrossRefGoogle Scholar
  122. Sefton MV, May MH, Lahooti S, Babensee JE (2000) Making microencapsulation work: conformal coating, immobilization gels and in vivo performance. J Control Release 65:173–186CrossRefPubMedGoogle Scholar
  123. Şen M, Uzun C, Güven O (2000) Controlled release of terbinafine hydrochloride from pH sensitive poly(acrylamide/maleic acid) hydrogels. Int J Pharm 203(1–2):149–157Google Scholar
  124. Segundo EP, Guerrero DQ, Cornejo BNZ, Rondero AG, Arzaluz MGN, Jose Manuel Cornejo-Bravo JMC (2008) Controlled release of model substances from pH-sensitive hydrogels. J Mex Chem Soc 52(4):272–278Google Scholar
  125. Shibayama M (2012) Structure-mechanical property relationship of tough hydrogels. Soft Matter 8:8030–8038CrossRefGoogle Scholar
  126. Shivashankar M, Mandal BK (2012). A review on interpenetrating polymer network. Int J Pharm Pharm Sci 4(5):1–7Google Scholar
  127. Sidney RS, Lousis LW, Gray JC (1993) US Patent US5185024Google Scholar
  128. Song SS, Kim HH, Yi YW (1996) US Patent US5514380Google Scholar
  129. Strain DE, Kennelly RG, Dittmar HR (1939) Methacrylate resins. Ind Eng Chem 31:382–387CrossRefGoogle Scholar
  130. Sun G, Zhang X, Shen YI, Sebastian R, Dickinson LE, Fox-Talbot K (2011) Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc Natl Acad Sci U S A 108:20976–20981CrossRefPubMedPubMedCentralGoogle Scholar
  131. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315:389–395CrossRefPubMedGoogle Scholar
  132. Turner DC, Steffen RB, Wildsmith C, Matiacio TA (2005) US patent 6861123Google Scholar
  133. Wang S, Lu L, Yaszemski MJ (2016) Mayo Foundation for Medical Education. Photocrosslinkable poly (caprolactone fumarate). U.S. Patent 9,255,178Google Scholar
  134. Wang M, Xu L, Hu H, Zhai M, Peng J, Nho Y, Li J, Wei G (2007) Radiation synthesis of PVP/CMC hydrogels as wound dressing. Nucl Instr Meth Phys Res B 265:385–389CrossRefGoogle Scholar
  135. Wei YS, Charlotte AEH (2014) Short to ultrashort peptide hydrogels for biomedical uses. Mater Today 17:381–388CrossRefGoogle Scholar
  136. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRefGoogle Scholar
  137. Williams DF (1990) Concise encyclopedia of medical and dental materials. Pergamon Press, Oxford, England (1990)Google Scholar
  138. Winter GD (1962) Formation of the scab and the rate of re-epithelialisation in the skin of the young domestic pig. Nature 193:293–294CrossRefPubMedGoogle Scholar
  139. Yan H, Dai J, Yang Z, Yang H, Cheng R (2011) Enhanced and selective adsorption of copper(II) ions on surface carboxymethylated chitosan hydrogel beads. Chem Eng J 174:586–594CrossRefGoogle Scholar
  140. Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci U S A 86:933–937CrossRefPubMedPubMedCentralGoogle Scholar
  141. Yom-Tov O, Neufeld L, Seliktar D, Bianco-Peled H (2014) A novel design of injectable porous hydrogels with in situ pore formation. Acta Biomater 10:4236–4246CrossRefPubMedGoogle Scholar
  142. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374:240–242CrossRefGoogle Scholar
  143. Zeng X, Jiang H (2008) Tunable liquid microlens actuated by infrared light-responsive hydrogel. Appl Phys Lett 93:151101–151103CrossRefGoogle Scholar
  144. Zhang YX, Wu FP, Li MZ, Wang EJ (2005) pH switching on-off semi-IPN hydrogel based on cross-linked poly (acrylamide-co-acrylic acid) and linear polyallyamine. Polymer 46:7695–7700CrossRefGoogle Scholar
  145. Zhang JT, Bhat R, Jandt KD (2009) Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater 5:488–497CrossRefPubMedGoogle Scholar
  146. Zhang L, Wang L, Guo B, Ma PX (2014) Cytocompatible injectable carboxymethyl chitosan/N-isopropylacrylamide hydrogels for localized drug delivery. Carbohydr Polym 103:110–118 Google Scholar
  147. Zohuriaan-Mehr MJ (2006) Super-absorbents. Iran Polym Soc, 2–4Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Sumit Mishra
    • 1
    Email author
  • Priti Rani
    • 1
  • Gautam Sen
    • 1
  • Kartick Prasad Dey
    • 1
  1. 1.Department of ChemistryBirla Institute of Technology MesraRanchiIndia

Personalised recommendations