Advertisement

Hydrogels pp 113-143 | Cite as

Protein- and Nanoparticle-Loaded Hydrogels Studied by Small-Angle Scattering and Rheology Techniques

  • Aristeidis Papagiannopoulos
  • Stergios Pispas
Chapter
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)

Abstract

In the last decades, hydrogels have been used for controlled loading and release in pharmaceutical applications. In tissue engineering, protein–hydrogel hybrid systems play a critical role in wound healing and tissue growth (Vermonden et al. in Chem Rev 112:2853–2888, 2012). At the same time, the mechanical and morphological properties of hydrogels have been modified and tuned by addition of nanoparticles (Haraguchi et al. in Macromolecules 36:5732–5741, 2003). The mechanical properties of hydrogels are one of their key characteristics. For example in injectable hydrogels, shear-thinning behavior is a defining factor (Guvendiren et al. in Soft Matter 8:260–272, 2012). Furthermore, the rheological behavior of a protein- or nanoparticle-loaded hydrogels may be influenced by the presence of the added compound, especially when the last acts as a cross-linking agent. The multi-scale hierarchical structures produced by hydrogel nanocomposites can be resolved by small-angle neutron scattering and X-ray scattering (SANS and SAXS) in the relevant length scales from 1 to 1000 nm (combined with ultra-small-angle X-ray and neutron scattering: USAXS and USANS). The study of such systems under deformation (e.g., Rheo-SANS) gives invaluable insight into the structural details that define mechanical properties (Shibayama in Polym J 43:18–34, 2011). In this chapter, the recent developments in the field of hydrogels and nanoparticle-loaded-hydrogel systems, based mainly on SANS/SAXS and rheological techniques, are presented. A wide range of experimental realizations and examples of promising hydrogel–protein combinations is covered, and the analyses used to connect the structure–rheology properties are demonstrated in a unifying way.

References

  1. Agrawal SK, Sanabria-DeLong N, Tew GN, Bhatia SR (2008) Nanoparticle-reinforced associative network hydrogels. Langmuir 24(22):13148–13154CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barker JG, Pedersen JS (1995) Instrumental smearing effects in radially symmetric small-angle neutron scattering by numerical and analytical methods. J Appl Crystallogr 28:105–114CrossRefGoogle Scholar
  3. Beaucage G (1995) Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Crystallogr 28(6):717–728CrossRefGoogle Scholar
  4. Beaucage G (1996) Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J Appl Crystallogr 29:134–146CrossRefGoogle Scholar
  5. Berts I, Gerelli Y, Hilborn J, Rennie AR (2013) Structure of polymer and particle aggregates in hydrogel compossites. J Polym Sci Part B Polym Phys 51(6):421–429CrossRefGoogle Scholar
  6. Campanella A, Holderer O, Raftopoulos KN, Papadakis CM, Staropoli MP, Appavou MS, Muller-Buschbaum P, Frielinghaus H (2016) Multi-stage freezing of HEUR polymer networks with magnetite nanoparticles. Soft Matter 12(13):3214–3225CrossRefPubMedGoogle Scholar
  7. Censi R, Di Martino P, Vermonden T, Hennink WE (2012) Hydrogels for protein delivery in tissue engineering. J Control. Release 161(2):680–692CrossRefPubMedGoogle Scholar
  8. Chakraborty P, Bairi P, Roy B, Nandi AK (2014) Rheological and fluorescent properties of riboflavin-poly(N-isopropylacrylamide) hybrid hydrogel with a potentiality of forming Ag nanoparticle. RSC Advances 4(97):54684–54693CrossRefGoogle Scholar
  9. Chen D, Wu D, Cheng G, Zhao H (2015) Reductant-triggered rapid self-gelation and biological functionalization of hydrogels. Polym Chem 6(48):8275–8283CrossRefGoogle Scholar
  10. Choi B, Loh XJ, Tan A, Loh CK, Ye E, Joo MK, Jeong B (2015) Introduction to in situ forming hydrogels for biomedical applications. In: Loh JX (ed) In-Situ gelling polymers: for biomedical applications. Springer Singapore, p 5–35Google Scholar
  11. Daoud M, Cotton JP, Farnoux B, Jannink G, Sarma G, Benoit H, Duplessix C, Picot C, de Gennes PG (1975) Solutions of flexible polymers. neutron experiments and interpretation. Macromolecules 8(6):804–818CrossRefGoogle Scholar
  12. Dmitri IS, Michel HJK (2003) Small-angle scattering studies of biological macromolecules in solution. Rep Prog Phys 66(10):1735CrossRefGoogle Scholar
  13. Dobrynin AV, Colby RH, Rubinstein M (1995) Scaling theory of polyelectrolyte solutions. Macromolecules 28(6):1859–1871CrossRefGoogle Scholar
  14. Du X, Wang J, Diao W, Wang L, Long J, Zhou H (2014) A genetically modified protein-based hydrogel for 3D culture of AD293 cells. PLoS ONE 9(9):e107949CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ghoorchian A, Simon JR, Bharti B, Han W, Zhao X, Chilkoti A, López GP (2015) Bioinspired reversibly cross-linked hydrogels comprising polypeptide micelles exhibit enhanced mechanical properties. Adv Func Mater 25(21):3122–3130CrossRefGoogle Scholar
  16. Glassman MJ, Olsen BD (2013) Structure and mechanical response of protein hydrogels reinforced by block copolymer self-assembly. Soft Matter 9(29):6814–6823CrossRefPubMedPubMedCentralGoogle Scholar
  17. Glatter O (1977) A new method for the evaluation of small-angle scattering data. J Appl Crystallogr 10(5):415–421CrossRefGoogle Scholar
  18. Gulrez SKH, Al-Assaf S, Phillips GO (2011) Hydrogels: Methods of Preparation, Characterisation and Applications. In: Progress in molecular and environmental bioengineering—From analysis and modeling to technology applications, InTech Open Access Publisher, LondonGoogle Scholar
  19. Guvendiren M, Lu HD, Burdick JA (2012) Shear-thinning hydrogels for biomedical applications. Soft Matter 8(2):260–272CrossRefGoogle Scholar
  20. Hammouda B (2010) Analysis of the Beaucage model. J Appl Crystallogr 43(6):1474–1478CrossRefGoogle Scholar
  21. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N, N-dimethylacrylamide) and clay. Macromolecules 36(15):5732–5741CrossRefGoogle Scholar
  22. Helminger M, Wu B, Kollmann T, Benke D, Schwahn D, Pipich V, Faivre D, Zahn D, Cölfen H (2014) Synthesis and characterization of gelatin-based magnetic hydrogels. Adv Func Mater 24(21):3187–3196CrossRefGoogle Scholar
  23. Higgins JS, Benoit HC (1994). Polymers and neutron scatteringGoogle Scholar
  24. Horkay F, McKenna GB, Deschamps P, Geissler E (2000) Neutron Scattering properties of randomly cross-linked polyisoprene gels. Macromolecules 33(14):5215–5220CrossRefGoogle Scholar
  25. Hule RA, Nagarkar RP, Altunbas A, Ramay HR, Branco MC, Schneider JP, Pochan DJ (2008) Correlations between structure, material properties and bioproperties in self-assembled [small beta]-hairpin peptide hydrogels. Faraday Discuss 139:251–264CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jonker AM, Löwik DWPM, van Hest JCM (2012) Peptide- and protein-based hydrogels. Chem Mater 24(5):759–773CrossRefGoogle Scholar
  27. Kaieda S, Plivelic TS, Halle B (2014) Structure and kinetics of chemically cross-linked protein gels from small-angle X-ray scattering. Phys Chem Chem Phys 16:4002CrossRefPubMedGoogle Scholar
  28. Kim M, Tang S, Olsen BD (2013) Physics of engineered protein hydrogels. J Polym Sci Part B Polym Phys 51(7):587–601CrossRefGoogle Scholar
  29. Kirchhof S, Abrami M, Messmann V, Hammer N, Goepferich AM, Grassi M, Brandl FP (2015) Diels–Alder hydrogels for controlled antibody release: correlation between mesh size and release rate. Mol Pharm 12(9):3358–3368CrossRefPubMedGoogle Scholar
  30. Koch MHJ, Vachette P, Svergun DI (2003) Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q Rev Biophys 36(02):147–227CrossRefPubMedGoogle Scholar
  31. Koga T, Hashimoto T, Takenaka M, Aizawa K, Amino N, Nakamura M, Yamaguchi D, Koizumi S (2008) New insight into hierarchical structures of carbon black dispersed in polymer matrices: a combined small-angle scattering study. Macromolecules 41(2):453–464CrossRefGoogle Scholar
  32. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New YorkGoogle Scholar
  33. Matsumoto K, Shundo A, Ohno M, Fujita S, Saruhashi K, Miyachi N, Miyaji K, Tanaka K (2015) Modulation of physical properties of supramolecular hydrogels based on a hydrophobic core. Phys Chem Chem Phys 17(3):2192–2198CrossRefPubMedGoogle Scholar
  34. Panyukov S, Rabin Y (1996) Polymer Gels: frozen inhomogeneities and density fluctuations. Macromolecules 29(24):7960–7975CrossRefGoogle Scholar
  35. Papagiannopoulos A (2016) Introduction to the most popular microrheology techniques. In: Microrheology with optical tweezers: principles and applications. Pan Stanford, SingaporeGoogle Scholar
  36. Papagiannopoulos A, Sotiropoulos K, Pispas S (2016) Particle tracking microrheology of the power-law viscoelasticity of xanthan solutions. Food HydrocollGoogle Scholar
  37. Papagiannopoulos A, Zhao J, Zhang G, Pispas S, Radulescu A (2013) Thermoresponsive transition of a PEO-b-PNIPAM copolymer: From hierarchical aggregates to well defined ellipsoidal vesicles. Polymer 54(23):6373–6380CrossRefGoogle Scholar
  38. Pape ACH, Bastings MMC, Kieltyka RE, Wyss HM, Voets IK, Meijer EW, Dankers PYW (2014) Mesoscale characterization of supramolecular transient networks using SAXS and rheology. Int J Mol Sci 15(1):1096–1111CrossRefPubMedPubMedCentralGoogle Scholar
  39. Park M-R, Chun C, Cho C-S, Song S-C (2010) Enhancement of sustained and controlled protein release using polyelectrolyte complex-loaded injectable and thermosensitive hydrogel. Eur J Pharm Biopharm 76(2):179–188CrossRefPubMedGoogle Scholar
  40. Pedersen JS (1997) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv Coll Interface Sci 70:171–210CrossRefGoogle Scholar
  41. Qian Y-C, Chen P-C, Zhu X-Y, Huang X-J (2015) Click synthesis of ionic strength-responsive polyphosphazene hydrogel for reversible binding of enzymes. RSC Advances 5(55):44031–44040CrossRefGoogle Scholar
  42. Radulescu A, Szekely NK, Polachowski S, Leyendecker M, Amann M, Buitenhuis J, Drochner M, Engels R, Hanslik R, Kemmerling G, Lindner P, Papagiannopoulos A, Pipich V, Willner L, Frielinghaus H, Richter D (2015) Tuning the instrument resolution using chopper and time of flight at the small-angle neutron scattering diffractometer KWS-2. J Appl Crystallogr 48(6):1849–1859CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rose S, Marcellan A, Boué NTF, Cousin F, Hourdet D (2015) Structure investigation of nanohybrid PDMA/silica hydrogels at rest and under uniaxial deformation. Soft Matter 11(29):5905–5917CrossRefPubMedGoogle Scholar
  44. Rubinstein M, Colby RH (2003) Polymer physics. OUP, OxfordGoogle Scholar
  45. Schexnailder P, Loizou E, Porcar L, Butler P, Schmidt G (2009) Heterogeneity in nanocomposite hydrogels from poly(ethylene oxide) cross-linked with silicate nanoparticles. Phys Chem Chem Phys 11(15):2760–2766CrossRefPubMedGoogle Scholar
  46. Schillemans JP, Verheyen E, Barendregt A, Hennink WE, Van Nostrum CF (2011) Anionic and cationic dextran hydrogels for post-loading and release of proteins. J Control Release 150(3):266–271CrossRefPubMedGoogle Scholar
  47. Schmidt P (1991) Small-angle scattering studies of disordered, porous and fractal systems. J Appl Crystallogr 24(5):414–435CrossRefGoogle Scholar
  48. Shen M, Li L, Sun Y, Xu J, Guo X, Prud’homme RK (2014) Rheology and adhesion of poly(acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives. Langmuir 30(6):1636–1642CrossRefPubMedGoogle Scholar
  49. Shen W, Kornfield JA, Tirrell DA (2007) Structure and mechanical properties of artificial protein hydrogels assembled through aggregation of leucine zipper peptide domains. Soft Matter 3(1):99–107CrossRefGoogle Scholar
  50. Shibayama M (2011) Small-angle neutron scattering on polymer gels: phase behavior, inhomogeneities and deformation mechanisms. Polym J 43(1):18–34CrossRefGoogle Scholar
  51. Shibayama M, Kurokawa H, Nomura S, Muthukumar M, Stein RS, Roy S (1992) Small-angle neutron scattering from poly(vinyl alcohol)-borate gels. Polymer 33(14):2883–2890CrossRefGoogle Scholar
  52. Smeets NMB, Patenaude M, Kinio D, Yavitt FM, Bakaic E, Yang F-C, Rheinstadter M, Hoare T (2014) Injectable hydrogels with in situ-forming hydrophobic domains: oligo(d, l-lactide) modified poly(oligoethylene glycol methacrylate) hydrogels. Polym Chem 5(23):6811–6823CrossRefGoogle Scholar
  53. Sorensen CM (2001) Light scattering by fractal aggregates: a review. Aerosol Sci Technol 35(2):648–687CrossRefGoogle Scholar
  54. Taki A, John B, Arakawa S, Okamoto M (2013) Structure and rheology of nanocomposite hydrogels composed of DNA and clay. Eur Polymer J 49(4):923–931CrossRefGoogle Scholar
  55. Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  56. Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and Applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRefGoogle Scholar
  57. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847CrossRefPubMedGoogle Scholar
  58. Teixeira J (1986) Experimental methods for studying fractal aggregates. In: Stanley HE, Ostrowsky N (eds) On growth and form: fractal and non-fractal patterns in physics. Springer, Dordrecht, Netherlands, pp 145–162CrossRefGoogle Scholar
  59. Urueña JM, Pitenis AA, Nixon RM, Schulze KD, Angelini TE, Gregory Sawyer W (2015) Mesh size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology 1–2:24–29CrossRefGoogle Scholar
  60. Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112(5):2853–2888CrossRefPubMedGoogle Scholar
  61. Vilgis TA, Winter HH (1988) Mechanical selfsimilarity of polymers during chemical gelation. Coll Polym Sci 266(6):494–500Google Scholar
  62. Winter H, Mours M (1997) Rheology of polymers near liquid-solid transitions. In: Neutron spin echo spectroscopy viscoelasticity rheology, vol 134. Springer, Heidelberg, pp 165–234Google Scholar
  63. Wyatt NB, Liberatore MW (2010) The effect of counterion size and valency on the increase in viscosity in polyelectrolyte solutions. Soft Matter 6(14):3346–3352CrossRefGoogle Scholar
  64. Zhang J-T, Petersen S, Thunga M, Leipold E, Weidisch R, Liu X, Fahr A, Jandt KD (2010) Micro-structured smart hydrogels with enhanced protein loading and release efficiency. Acta Biomater 6(4):1297–1306CrossRefPubMedGoogle Scholar
  65. Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5(4):2054CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zustiak SP, Wei Y, Leach JB (2013) Protein–hydrogel interactions in tissue engineering: mechanisms and applications. Tissue Eng Part B Rev 19(2):160–171Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Theoretical and Physical Chemistry InstituteNational Hellenic Research FoundationAthensGreece

Personalised recommendations