Hydrogels pp 435-470 | Cite as

Hydrogels from Catechol-Conjugated Polymeric Materials

  • Saad MoulayEmail author
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)


Digging into in vivo phenomena is not always a vain task. Its merits will lighten sooner or later. Indeed, in the last two decades, Nature has unveiled to scientists the adhesiveness of proteins secreted within the mussel feet, to a large spectrum of substrata, and, unexpectedly, in aqueous environment. The secret behind this bio-adhesiveness lies on the synergetic adhesive action of 3, 4-dihydroxyphenyl-l-alanine (l-DOPA) and lysine, two amino acid residues in protein skeleton. Mimicking the mussel feet protein (mfp), a plethora of synthetic and natural polymers functionalized with catechol-containing molecules such as l-DOPA were considered as platforms for hydrogel making. Hydrogels tackled in this chapter include those based on poly(alkene oxide)s including poly(ethylene glycol) (PEG) and Pluronics (PEO/PPO/PEO), polyacrylics, alginate, chitosan, gelatin, hyaluronic acid, polypeptides, polyamides, polyesters, polyurethane, poly(vinyl alcohol), and polyallylamine. The applications thereof, in tune with the properties of polymer–catechol conjugates, are propitiously highlighted.


Adhesive Catechol Hydrogels Mussels Polymers 


  1. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121CrossRefPubMedGoogle Scholar
  2. Ahn BK, Lee DW, Israelachvili JN, Waite JH (2014) Surface-initiated self-healing of polymers in aqueous media. Nat Mater 13:867–872CrossRefPubMedGoogle Scholar
  3. Ai Y, Nie J, Wu G, Yang D (2014) The DOPA-functionalized bioadhesive with properties of photocrosslinked and thermoresponsive. J Appl Polym Sci 131:10p. Scholar
  4. Alge DL, Azagarsamy MA, Donohue DF, Anseth KS (2013) Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine-norbornene chemistry. Biomacromol 14:949–953CrossRefGoogle Scholar
  5. Altunbas A, Pochan DJ (2012) Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering. Top Curr Chem 310:135–167Google Scholar
  6. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. In: Amidi M, Hennink WE (eds) Chitosan-based formulations of drugs, imaging agents and biotherapeutics. Adv Drug Del Rev 62:83–99Google Scholar
  7. Bilic G, Brubaker C, Messersmith PB, Mallik AS, Quinn TM, Haller C, Done E, Gucciardo L, Zeisberger SM, Zimmermann R, Deprest J, Zisch AH (2010) Injectable candidate sealants for fetal membrane repair: bonding and toxicity in vitro. Am J Obstet Gynecol 202:85.e1–85.e9Google Scholar
  8. Brubaker CE, Messersmith PB (2011) Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromol 12:4326–4334CrossRefGoogle Scholar
  9. Brubaker CE, Kissler H, Wang LJ, Kaufman DB, Messersmith PB (2010) Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials 31:420–427CrossRefPubMedGoogle Scholar
  10. Burke SA, Ritter-Jones M, Lee BP, Messersmith PB (2007) Thermal gelation and tissue adhesion of biomimetic hydrogels. Biomed Mater 2:203–210. Scholar
  11. Cencer M, Liu Y, Winter A, Murley M, Meng H, Lee BP (2014) Effect of pH on the rate of curing and bioadhesive properties of dopamine functionalized poly(ethylene glycol) hydrogels. Biomacromol 15:2861–2869CrossRefGoogle Scholar
  12. Choi YC, Choi JS, Jung YJ, Cho YW (2014) Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe3+ ion crosslinking. J Mater Chem B 2:201–209CrossRefGoogle Scholar
  13. Cui J, Iturri J, Paez J, Shafiq Z, Serrano C, d’Ischia M, del Campo A (2014) Dopamine-based coatings and hydrogels: toward substitution-related structure-property relationships. Macromol Chem Phys 215:2403–2413CrossRefGoogle Scholar
  14. Ding X, Vegesna GK, Meng H, Winter A, Lee BP (2015) Nitro-group functionalization of dopamine and its contribution to the viscoelastic properties of catechol-containing nanocomposite hydrogels. Macromol Chem Phys, 11 p.
  15. Dooling LJ, Tirrell DA (2013) Peptide and protein hydrogels. In: Loh XJ, Scherman OA (eds) Polymeric and self-assembled hydrogels: from fundamental understanding to applications (Chap. 5). Royal Society of Chemistry, pp 93–124Google Scholar
  16. Fairbanks BD, Schwartz MP, Halevi AE, Nuttelman CR, Bowman CN, Anseth KS (2009) A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv Mater 21:5005–5010CrossRefPubMedPubMedCentralGoogle Scholar
  17. Faure E, Falentin-Daudré C, Jérôme C, Lyskawa J, Fournier D, Woisel P, Detrembleur C (2013) Catechols as versatile platforms in polymer chemistry. Prog Polym Sci 38:236–270CrossRefGoogle Scholar
  18. Fichman G, Adler-Abramovich L, Manohar S, Mironi-Harpaz I, Guterman T, Seliktar D, Messersmith PB, Gazi E (2014) Seamless metallic coating and surface adhesion of self-assembled bioinspired nanostructures based on di-(3,4-dihydroxy-l-phenylalanine) peptide motif. ACS Nano 8:7220–7228CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fullenkamp DE, Barrett DG, Miller DR, Kurutz JW, Messersmith PB (2014) pH-dependent cross-linking of catechols through oxidation via Fe3+ and potential implications for mussel adhesion. RSC Adv 4:25127–25134CrossRefPubMedPubMedCentralGoogle Scholar
  20. García-Fernández L, Cui J, Serrano C, Shafi Z, Gropeanu RA, Miguel VS, Ramos JI, Wang M, Auernhammer GK, Rit S, Golriz AA, Berger R, Wagner M, del Campo A (2013) Antibacterial strategies from the sea: Polymer-bound Cl-catechols for prevention of biofilm formation. Adv Mater 25:529–533CrossRefPubMedGoogle Scholar
  21. Ghobril C, Grinstaff MW (2015) The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem Soc Rev 44:1820–1835CrossRefPubMedGoogle Scholar
  22. Guo Z, Ni K, Wei D, Ren Y (2015) Fe3+-induced oxidation and coordination cross-linking in catechol-chitosan hydrogels under acidic pH conditions. RSC Adv 5:37377–37384CrossRefGoogle Scholar
  23. Guvendiren M, Messersmith PB, Shull KR (2008) Self-assembly and adhesion of DOPA modified methacrylic triblock hydrogels. Biomacromol 9:122–128CrossRefGoogle Scholar
  24. Haller CM, Buerzle W, Brubaker CE, Messersmith PB, Mazza E, Ochsenbein-Koelble N, Zimmermann R, Ehrbar M (2011) Mussel-mimetic tissue adhesive for fetal membrane repair: a standardized ex vivo evaluation using elastomeric membranes. Prenat Diagn 31:654–660CrossRefPubMedGoogle Scholar
  25. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65CrossRefGoogle Scholar
  26. He L, Fullenkamp DE, Rivera JG, Messersmith PB (2011) pH responsive self-healing hydrogels formed by boronate-catechol complexation. Chem Commun 47:7497–7499CrossRefGoogle Scholar
  27. Holten-Andersen N, Jaishankar A, Harrington MJ, Fullenkamp DE, DiMarco G, He L, McKinley GH, Messersmith PB, Lee KYC (2014) Metal-coordination: using one of nature’s tricks to control soft material mechanics. J Mater Chem B 2:2467–2472CrossRefPubMedGoogle Scholar
  28. Hong S, Lee H, Lee H (2014) Controlling mechanical properties of bio-inspired hydrogels by modulating nano-scale, inter-polymeric junctions. Beilstein J Nanotechnol 5:887–894CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hong SH, Shin M, Lee J, Ryu JH, Lee S, Yang JW, Kim WD, Lee H (2015) STAPLE: stable alginate gel prepared by linkage exchange from ionic to covalent bonds. Adv Healthcare Mater, 5 p.
  30. Huang K, Lee B, Messersmith PB (2001) Synthesis and characterization of self-assembling block copolymers containing adhesive moieties. Polym Prepr 42:147–148Google Scholar
  31. Huang K, Lee B, Ingram DR, Messersmith PB (2002) Synthesis and characterization of self-assembling block copolymers containing bioadhesive end groups. Biomacromol 3:397–406CrossRefGoogle Scholar
  32. Huang K, Chen JS, Liu Y (2012) Bioinspired synthesis of cross-linking of dopamine-containing block copolymers to form thermosensitive covalent hydrogels. Key Eng Mater 531–532:238–241CrossRefGoogle Scholar
  33. Hutanu D, Frishberg MD, Guo L, Darie CC (2014) Recent applications of polyethylene glycols (PEGs) and PEG derivatives. Mod Chem Appl 2:6p. Scholar
  34. Jonker AM, Löwik DWPM, van Hest JCM (2012) Peptide- and protein-based hydrogels. Chem Mater 24:759–773CrossRefGoogle Scholar
  35. Jonker AM, Borrmann A, van Eck ERH, van Delft FL, Löwik DWPM, van Hest JCM (2015) A fast and activatable cross-linking strategy for hydrogel formation. Adv Mater 27:1235–1240CrossRefPubMedGoogle Scholar
  36. Kastrup CJ, Nahrendorf M, Figueiredo JL, Lee H, Kambhampati S, Lee T, Cho SW, Gorbatov R, Iwamoto Y, Dang TT, Dutta P, Yeon JH, Cheng H, Pritchard CD, Vegas AJ, Siegel CD, MacDougall S, Okonkwo M, Thai A, Stone JR, Coury AJ, Weissleder R, Langer R, Anderson DG (2012) Painting blood vessels and atherosclerotic plaques with an adhesive drug depot. Proc Natl Acad Sci USA 109:21444–21449CrossRefPubMedGoogle Scholar
  37. Kim K, Ryu JH, Lee DY, Lee H (2013) Bio-inspired catechol conjugation converts water insoluble chitosan into a highly water soluble, adhesive chitosan derivative for hydrogels and LbL assembly. Biomater Sci 1:783–790CrossRefGoogle Scholar
  38. Kim BJ, Oh DX, Kim S, Seo JH, Hwang DS, Masic A, Han DK, Cha HJ (2014) Mussel-mimetic protein-based adhesive hydrogel. Biomacromol 15:1579–1585CrossRefGoogle Scholar
  39. Kim K, Kim K, Ryu JH, Lee H (2015) Chitosan-catechol: a polymer with long-lasting mucoadhesive properties. Biomaterials 52:161–170CrossRefPubMedGoogle Scholar
  40. Krogsgaard M, Behrens MA, Pedersen JS, Birkedal H (2013) Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromol 14:297–301CrossRefGoogle Scholar
  41. Krogsgaard M, Hansen MR, Birkedal H (2014) Metals & polymers in the mix: fine-tuning the mechanical properties & color of self-healing mussel-inspired hydrogels. J Mater Chem B 2:8292–8297CrossRefGoogle Scholar
  42. Krogsgaard M, Nue V, Birkedal H (2015) Mussel-inspired materials: self-healing through coordination chemistry, Minireview. Chem Eur J 21:1–15CrossRefGoogle Scholar
  43. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50:1475–1486CrossRefGoogle Scholar
  44. Lee BP, Konst S (2014) Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry. Adv Mater 26:3415–3419CrossRefPubMedGoogle Scholar
  45. Lee YK, Lee SY (2014) A colorimetric alginate-catechol hydrogel suitable as a spreadable pH indicator. Dyes Pigments 108:1–6CrossRefGoogle Scholar
  46. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lee BP, Dalsin JL, Messersmith PB (2001) Enzymatic and non-enzymatic pathways to formation of DOPA-modified PEG hydrogels. Polym Prepr 42:151–152Google Scholar
  48. Lee BP, Dalsin JL, Messersmith PB (2002) Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromol 3:1038–1047CrossRefGoogle Scholar
  49. Lee BP, Huang K, Nunalee FN, Shull K, Messersmith PB (2004) Synthesis of 3,4-dihydroxyphenylalanine (DOPA) containing monomers and their co-polymerization with PEG diacrylate to form hydrogels. J Biomater Sci Polym Edn 15:449–464CrossRefGoogle Scholar
  50. Lee BP, Chao CY, Nunalee FN, Motan E, Shull KR, Messersmith PB (2006) Rapid gel formation and adhesion in photocurable and biodegradable block copolymers with high DOPA content. Macromolecules 39:1740–1748CrossRefGoogle Scholar
  51. Lee BP, Liu Y, Konst S (2014) Novel hydrogel actuator based on biomimetic chemistry. In: MRS Proceedings, vol. 1710. Materials Research Society.
  52. Lee BP, Lin MH, Narkar A, Konst S, Wilharm R (2015a) Modulating the movement of hydrogel actuator based on catechol-iron ion coordination chemistry. Sens Actuator B Chem 206:456–462CrossRefGoogle Scholar
  53. Lee SB, González-Cabezas C, Kim KM, Kim KN, Kuroda K (2015b) Catechol-functionalized synthetic polymer as a dental adhesive to contaminated dentin surface for a composite restoration. Biomacromol 16:2265–2275CrossRefGoogle Scholar
  54. Li L, Smitthipong W, Zeng H (2015a) Mussel-inspired hydrogels for biomedical and environmental applications. Polym Chem 6:353–358CrossRefGoogle Scholar
  55. Li L, Yan B, Yang J, Chen L, Zeng H (2015b) Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property. Adv Mater, 5 p.
  56. Liu Y, Meng H, Konst S, Sarmiento R, Rajachar R, Lee BP (2014) Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity. ACS Appl Mater Interfaces 6:16982–16992CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mehdizadeh M, Weng H, Gyawali D, Tang L, Yang J (2012) Injectable citrate-based mussel inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 33:7972–7983CrossRefPubMedPubMedCentralGoogle Scholar
  58. Meng H, Li Y, Faust M, Konst S, Lee BP (2015) Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety. Acta Biomater 17:160–169CrossRefPubMedPubMedCentralGoogle Scholar
  59. Messersmith PB, Rivera J, Gong YK (2014) Antifouling hydrogels, coatings, and methods of synthesis and use thereof. US Patent 8,796,394 B2, 5 Aug 2014Google Scholar
  60. Moulay S (2009) Poly(vinyl alcohol): what a material! what a chemistry! In: Pandalai SG (ed) Recent research and developments in applied polymer science, Part II, vol 4. Research Signpost, Kerala, India, pp 391–496Google Scholar
  61. Moulay S (2014) Dopa/catechol-tethered polymers: bioadhesives and biomimetic adhesive materials. Polym Rev 54:436–513CrossRefGoogle Scholar
  62. Moulay S (2015) Review: poly(vinyl alcohol) functionalizations and applications. Polym Plast Technol Eng 54:1289–1319CrossRefGoogle Scholar
  63. Necas J, Bartosikova L, Brauner P, Kolar J (2008) Hyaluronic acid (hyaluronan): a review. Vet Med Czech 53:397–411CrossRefGoogle Scholar
  64. Neto AI, Cibrão AC, Correia CR, Carvalho RR, Luz GM, Ferrer GG, Botelho G, Picart C, Alves NM, Mano JF (2014) Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications. Small, 11 p.
  65. Oh YJ, Cho H, Lee H, Park KJ, Lee H, Park SY (2012) Bio-inspired catechol chemistry: a new way to develop a re-moldable and injectable coacervate hydrogel. Chem Commun 48:11895–11897CrossRefGoogle Scholar
  66. Okay O (2009) General properties of hydrogels. In: Gerlach G, Arndt KF (eds) Hydrogel sensors and actuators. Springer Series on chemical sensors and biosensors, vol. 6. Springer, Berlin Heidelberg, pp 1–14Google Scholar
  67. Park JP, Song IT, Lee J, Ryu JH, Lee Y, Lee H (2015) Vanadyl-catecholamine hydrogels inspired by ascidians and mussels. Chem Mater 27:105–111CrossRefGoogle Scholar
  68. Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305CrossRefPubMedGoogle Scholar
  69. Peak CW, Wilker JJ, Schmidt G (2013) A review on tough and sticky hydrogels. Colloid Polym Sci 291:2031–2047CrossRefGoogle Scholar
  70. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360CrossRefGoogle Scholar
  71. Phelps EA, Enemchukwu NO, Fiore VF, Sy JC, Murthy N, Sulchek TA, Barker TH, García AJ (2012) Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv Mater 24:64–70CrossRefPubMedGoogle Scholar
  72. Riva R, Ragelle H, des Rieux A, Duhem N, Jérôme C, Préat V (2011) Chitosan and chitosan derivatives in drug delivery and tissue engineering. Adv Polym Sci 244:19–44Google Scholar
  73. Ryu JH, Lee Y, Kong WH, Kim TG, Park TG, Lee H (2011) Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromol 12:2653–2659CrossRefGoogle Scholar
  74. Ryu JH, Jo S, Koh MY, Lee H (2014a) Bio-Inspired, water-soluble to insoluble self-conversion for flexible, biocompatible, transparent, catecholamine polysaccharide thin films. Adv Funct Mater, 8 p.
  75. Ryu JH, Lee Y, Do MJ, Jo SD, Kim JS, Kim BS, Im GI, Park TG, Lee H (2014b) Chitosan-g-hematin: enzyme-mimicking polymeric catalyst for adhesive hydrogels. Acta Biomater 10:224–233CrossRefPubMedGoogle Scholar
  76. Ryu JH, Hong S, Lee H (2015) Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: a mini review. Acta Biomater 27:101–115CrossRefPubMedGoogle Scholar
  77. Schante CE, Zuber G, Herlin C, Vandamme TF (2011) Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr Polym 85:469–489CrossRefGoogle Scholar
  78. Seo JH, Park SJ, Um SH, Nam SW, Kim YJ, Kim JH (2015) Swelling and metal-ion adsorption properties of dopamine-conjugated polyaspartate hydrogel. J Polym Environ 23:90–96CrossRefGoogle Scholar
  79. Shi D, Liu R, Dong W, Li X, Zhang H, Chen M, Akashi M (2015) pH-Dependent and self-healing properties of mussel modified poly(vinyl alcohol) hydrogels in a metal-free environment. RSC Adv 5:82252–82258CrossRefGoogle Scholar
  80. Shin J, Lee JS, Lee C, Park HJ, Yang K, Jin Y, Ryu JH, Hong KS, Moon SH, Chung HM, Yang HS, Um SH, Oh JW, Kim DI, Lee H, Cho SW (2015) Tissue adhesive catechol-modified hyaluronic acid hydrogel for effective, minimally invasive cell therapy. Adv Funct Mater 25:3814–3824CrossRefGoogle Scholar
  81. Skelton S, Bostwick M, O’Connor K, Konst S, Caseya S, Lee BP (2013) Biomimetic adhesive containing nanocomposite hydrogel with enhanced materials properties. Soft Matter 9:3825–3833CrossRefGoogle Scholar
  82. Sun P, Wang J, Yao X, Peng Y, Tu X, Du P, Zheng Z, Wang X (2014) Facile preparation of mussel-inspired polyurethane hydrogel and its rapid curing behavior. ACS Appl Mater Interfaces 6:12495–12504CrossRefPubMedGoogle Scholar
  83. Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polymer 69:369–383CrossRefGoogle Scholar
  84. Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  85. Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRefGoogle Scholar
  86. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847CrossRefPubMedGoogle Scholar
  87. Vatankhah-Varnoosfaderani M, Hashmi S, GhavamiNejad A, Stadler FJ (2014) Rapid self-healing and triple stimuli responsiveness of a supramolecular polymer gel based on boron-catechol interactions in a novel water-soluble mussel-inspired copolymer. Polym Chem 5:512–523CrossRefGoogle Scholar
  88. Wang Y, Zhao Q, Luo Y, Xu Z, Zhang H, Yang S, Wei Y, Jia X (2015a) A high stiffness bio-inspired hydrogel from the combination of a poly(amido amine) dendrimer with DOPA. Chem Commun 51:16786–16789CrossRefGoogle Scholar
  89. Wang W, Xu Y, Li A, Li T, Liu M, von Klitzing R, Ober CK, Kayitmazer AB, Li L, Guo X (2015b) Zinc induced polyelectrolyte coacervate bioadhesive and its transition to a self-healing hydrogel. RSC Adv 5:66871–66878CrossRefGoogle Scholar
  90. Wang B, Jeon YS, Park HS, Kim YJ, Kim JH (2015c) Mussel-mimetic self-healing polyaspartamide derivative gel via boron-catechol interactions. eXPRESS Polym Lett 9:799–808Google Scholar
  91. White EM, Seppala JE, Rushworth PM, Ritchie BW, Sharma S, Locklin J (2013) Switching the adhesive state of catecholic hydrogels using phototitration. Macromolecules 46:8882–8887CrossRefGoogle Scholar
  92. Wilker JJ (2014) Self-healing polymers: sticky when wet. Nat Mater 13:849–850CrossRefPubMedGoogle Scholar
  93. Willcox PJ, Howie DWJr, Schmidt-Rohr K, Hoagland DA, Gido SP, Pudjijanto S, Kleiner LW, Venkatraman S (1999) Microstructure of poly(vinyl alcohol) hydrogels produced by freeze/thaw cycling. J Polym Sci B Polym Phys 37:3438–3454Google Scholar
  94. Xu Z (2013) Mechanics of metal-catecholate complexes: The roles of coordination state and metal types. Sci Rep 3: 2914, 7 p
  95. Xu J, Soliman GM, Barralet J, Cerruti M (2012a) Mollusk glue inspired mucoadhesives for biomedical applications. Langmuir 28:14010–14017CrossRefPubMedGoogle Scholar
  96. Xu H, Nishida J, Ma W, Wu H, Kobayashi M, Otsuka H, Takahara A (2012b) Competition between oxidation and coordination in cross-linking of polystyrene copolymer containing catechol groups. ACS Macro Lett 1:457–460CrossRefGoogle Scholar
  97. Xu H, Nishida J, Wu H, Higaki Y, Otsuka H, Ohta N, Takahara A (2013) Structural effects of catechol-containing polystyrene gels based on dual cross-linking approach. Soft Matter 9:1967–1974CrossRefGoogle Scholar
  98. Xu JX, Zhou Z, Wu B, He BF (2014) Enzymatic formation of a novel cell-adhesive hydrogel based on small peptides with a laterally grafted l-3,4-dihydroxyphenylalanine group. Nanoscale 6:1277–1280CrossRefPubMedGoogle Scholar
  99. Xu J, Strandman S, Zhu JXX, Barralet J, Cerruti M (2015) Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials 37:395–404CrossRefPubMedGoogle Scholar
  100. Yang Y, Urban MW (2013) Self-healing polymeric materials. Chem Soc Rev 42:7446–7467CrossRefPubMedGoogle Scholar
  101. Yavvari PS, Srivastava A (2015) Robust, self-healing hydrogels synthesised from catechol rich polymers. J Mater Chem B 3:899–910CrossRefGoogle Scholar
  102. Yu L, Liu X, Yuan W, Brown LJ, Wang D (2015) Confined flocculation of ionic pollutants by poly(l-dopa)-based polyelectrolyte complexes in hydrogel beads for three-dimensional, quantitative, efficient water decontamination. Langmuir 31:6351–6366CrossRefPubMedGoogle Scholar
  103. Zeng X, Westhaus E, Eberle N, Lee B, Messersmith PB (2000) Synthesis and characterization of DOPA-PEG conjugates. Polym Prepr 41:989–990Google Scholar
  104. Zhang W, Pan Z, Yang FK, Zhao B (2015) A facile in situ approach to polypyrrole functionalization through bioinspired catechols. Adv Funct Mater, 10 p.
  105. Zheng J, Callahan LAS, Hao J, Guo K, Wesdemiotis C, Weiss RA, Becker ML (2012) Strain-promoted cross-linking of PEG-based hydrogels via copper-free cycloaddition. ACS Macro Lett 1:1071–1073CrossRefPubMedPubMedCentralGoogle Scholar
  106. Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Laboratoire de Chimie-Physique Moléculaire et Macromoléculaire, Département de Chimie Industrielle, Faculté de TechnologieUniversité Saâd Dahlab de BlidaBlidaAlgeria

Personalised recommendations