Advertisement

Hydrogels pp 409-434 | Cite as

Various Functional and Stimuli-Responsive Hydrogel Based on Polyaspartamides

  • Bo Wang
  • Ji-Heung Kim
Chapter
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)

Abstract

Polyaspartamides are amide derivatives of biodegradable poly(aspartic acid), the thermal polycondensate of aspartic acid, which have been investigated as carriers for macromolecular prodrugs, platforms for many functional polymers and gels, and macromolecular nano-assemblies for drug delivery system. In this chapter, various different stimuli-responsive (temperature, pH, ion, redox, CO2, etc.), physical and chemical, hydrogel systems based on polyaspartamides will be reviewed with interests for the development of various smart biomaterials and industrial polymeric gels.

Keywords

Polyaspartamide Hydrogel Poly(aspartic acid) Stimuli-responsive Biomaterials 

References

  1. Bach QV, Moon JR, Lee DS, Kim JH (2008) Lower critical solution temperature behavior of amphiphilic copolymers based on polyaspartamide derivatives. J Appl Polym Sci 107:509–513CrossRefGoogle Scholar
  2. Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48:1815–1823CrossRefGoogle Scholar
  3. Brazel CS, Peppas NA (1996) Pulsatile local delivery of thrombolytic and antithrombotic agents using poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. J Control Release 39:57–64CrossRefGoogle Scholar
  4. Bui QT, Jeon YS, Um SH, Chung DJ, Kim JH (2015) Preparation of novel hybrid gels from polyaspartamides and natural alginate or hyaluronate by click reaction. J Polym Res 22:27CrossRefGoogle Scholar
  5. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRefGoogle Scholar
  6. Carenza M (1992) Recent achievements in the use of radiation polymerization and grafting for biomedical applications. Int J Radiat Appl Instrum C Radiat Phys Chem 39:485–493Google Scholar
  7. Castelli F, Pitarresi G, Tomarchio V, Giammona G (1997) Effect of pH on the transfer kinetics of an anti-inflammatory drug from polyaspartamide hydrogels to a lipid model membrane. J Control Release 45:103–111CrossRefGoogle Scholar
  8. Chang G, Yu L, Yang Z (2009) A delicate ionizable-group effect on self-assembly and thermogelling of amphiphilic block copolymers in water. Polymer 50:6111–6120CrossRefGoogle Scholar
  9. Chapiro A (1995) Radiation chemistry in the field of biomaterials. Radiat Phys Chem 46:159–160 CrossRefGoogle Scholar
  10. Chiu YL, Chen SC, Su CJ, Hsiao CW, Chen YM, Chen HL, Sung HW (2009) pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials 30:4877–4888Google Scholar
  11. Deng G, Li F, Yu H, Liu F, Liu C, Sun W, Chen Y (2012) Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol-gel transitions. ACS Macro Lett 1:275–279CrossRefGoogle Scholar
  12. Domb AJ, Kost J, Wiseman D (1998) Handbook of biodegradable polymers (vol 7). CRC PressGoogle Scholar
  13. Ebara M, Kotsuchibashi Y, Uto K (2014) Introductory guide to smart biomaterials. Smart Biomaterials. Springer, pp 1–7Google Scholar
  14. Elisseeff J, Anseth K, Langer R, Hrkach JS (1997) Synthesis and characterization of photo-crosslinked polymers based on poly(l-lactic acid-co-l-aspartic acid). Macromolecules 30:2182–2184CrossRefGoogle Scholar
  15. Elvira C, Mano JF, San Roman J, Reis RL (2002) Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials 23:1955–1966PubMedCrossRefPubMedCentralGoogle Scholar
  16. Endo T, Nagai D, Monma T, Yamaguchi H, Ochiai B (2004) A novel construction of a reversible fixation-release system of carbon dioxide by amidines and their polymers. Macromolecules 37:2007–2009CrossRefGoogle Scholar
  17. Fiorica C, Senior RA, Pitarresi G, Palumbo FS, Giammona G, Deshpande P, MacNeil S (2011) Biocompatible hydrogels based on hyaluronic acid cross-linked with a polyaspartamide derivative as delivery systems for epithelial limbal cells. Int J Pharm 414:104–111PubMedCrossRefPubMedCentralGoogle Scholar
  18. Fiorica C, Palumbo FS, Pitarresi G (2015) In-situ forming gel-like depot of a polyaspartamide-polylactide copolymer for once a week administration of sulpiride. J Pharm Pharmacol 67:78–86PubMedCrossRefPubMedCentralGoogle Scholar
  19. Freeman MB, Paik YH, Swift G (1996) Biodegradability of polycarboxylates: structure-activity studies. Hydrogels Biodegradable Polym Bioapplications 627:118–136CrossRefGoogle Scholar
  20. Garcia A, Marquez M, Cai T, Rosario R, Hu Z, Gust D, Rosario R, Hu Z, Gust D, Park CD (2007) Photo-, thermally, and pH-responsive microgels. Langmuir 23:224–229PubMedCrossRefPubMedCentralGoogle Scholar
  21. Giammona G, Carlisi B, Palazzo S (1987) Reaction of α,β-poly(N-hydroxyethyl-dl-aspartamide) with derivatives of carboxylic acids. J Polym Sci Part A Polym Chem 25:2813–2818CrossRefGoogle Scholar
  22. Giammona G, Puglisi G, Cavallaro G, Spadaro A, Pitarresi G (1995) Chemical stability and bioavailability of acyclovir coupled to α,β-poly(N-2-hydroxyethyl-dl-aspartamide). J Control Release 33:261–271Google Scholar
  23. Giammona G, Pitarresi G, Tomarchio V (1997) A hydrogel based on a polyaspartamide: characterization and evaluation of in-vivo biocompatibility and drug release in the rat. J Pharm Pharmacol 49:1051–1056PubMedCrossRefPubMedCentralGoogle Scholar
  24. Giammona G, Pitarresi G, Cavallaro G, Buscemi S, Saiano F (1999a) New biodegradable hydrogels based on a photocrosslinkable modified polyaspartamide: synthesis and characterization. BBA-Biomembranes 1428:29–38PubMedPubMedCentralGoogle Scholar
  25. Giammona G, Pitarresi G, Cavallaro G, Spadaro G (1999b) New biodegradable hydrogels based on an acryloylated polyaspartamide cross-linked by gamma irradiation. J Biomat Sci-Polym Ed 10:969–987CrossRefGoogle Scholar
  26. Giammona G, Pitarresi G, Cavallaro G, Mandracchia D (2006) pH-sensitive hydrogel based on a polyaspartamide derivative. J Drug Deliv Sci Tec 16:77–84CrossRefGoogle Scholar
  27. Gu X, Wang J, Liu X, Zhao D, Wang Y, Gao H, Wu G (2013) Temperature-responsive drug delivery systems based on polyaspartamides with isopropylamine pendant groups. Soft Matter 9:7267–7273CrossRefGoogle Scholar
  28. Gyarmati B, Vajna B, Némethy Á (2013) Redox- and pH-responsive cysteamine-modified poly(aspartic acid) showing a reversible sol-gel transition. Macromol Biosci 13:633–640PubMedCrossRefPubMedCentralGoogle Scholar
  29. Gyarmati B, Némethy Á, Szilágyi A (2014) Reversible response of poly(aspartic acid) hydrogels to external redox and pH stimuli. RSC Adv 4:8764–8771CrossRefGoogle Scholar
  30. Gyarmati B, Mészár EZ, Kiss L, MA, László K, Szilágyi A (2015) Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels. Acta Biomater 22:32–38Google Scholar
  31. Gyenes T, Torma V, Gyarmati B, Zrínyi M (2008) Synthesis and swelling properties of novel pH-sensitive poly(aspartic acid) gels. Acta Biomater 4:733–744PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hiraishi T (2015) Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications. Appl Microbiol Biot 1–8Google Scholar
  33. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRefGoogle Scholar
  34. Holzapfel BM, Reichert JC, Schantz JT, Gbureck U, Rackwitz L, Nöth U, Jakob F, Rudert M, Groll J, Hutmacher DW (2013) How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliv Rev 65:581–603PubMedCrossRefPubMedCentralGoogle Scholar
  35. Huang SJ (1989) 21-Biodegradation. Compr Polym Sci 6:597–605CrossRefGoogle Scholar
  36. Hunt JA, Chen R, van Veen T, Bryan N (2014) Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B 2:5319–5338CrossRefGoogle Scholar
  37. Huynh CT, Nguyen MK, Lee DS (2011) Injectable block copolymer hydrogels: achievements and future challenges for biomedical applications. Macromolecules 44:6629–6636CrossRefGoogle Scholar
  38. Jeon YS, Lei J, Kim JH (2008) Dye adsorption characteristics of alginate/polyaspartate hydrogels. J Ind Eng Chem 14:726–731CrossRefGoogle Scholar
  39. Jeon YS, Lei J, Chung DJ, Kim JH (2009) Sol-gel derived organic/inorganic hybrid gels based on poly(2-hydroxyethyl aspartamide) and silica. J Ind Eng Chem 15:544–549CrossRefGoogle Scholar
  40. Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL (2005) Green chem: reversible nonpolar-to-polar solvent. Nature 436:1102PubMedCrossRefPubMedCentralGoogle Scholar
  41. Jessop PG, Phan L, Carrier A, Robinson S, Dürr CJ, Harjani JR (2010) A solvent having switchable hydrophilicity. Green Chem 12:809–814CrossRefGoogle Scholar
  42. Kawano S, Fujita N, Shinkai S (2004) A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli. J Am Chem Soc 126:8592–8593PubMedCrossRefPubMedCentralGoogle Scholar
  43. Khare AR, Peppas NA (1995) Swelling/deswelling of anionic copolymer gels. Biomaterials 16:559–567PubMedCrossRefPubMedCentralGoogle Scholar
  44. Khutoryanskaya OV, Mayeva ZA, Mun GA, Khutoryanskiy VV (2008) Designing temperature-responsive biocompatible copolymers and hydrogels based on 2-hydroxyethyl (meth) acrylates. Biomacromol 9:3353–3361CrossRefGoogle Scholar
  45. Kim JH, Lee JH, Yoon SW (2002) Preparation and swelling behavior of biodegradable superabsorbent gels based on polyaspartic acid. J Ind Eng Chem 8:138–142Google Scholar
  46. Kim JH, Sim SJ, Lee DH, Chung DJ, Kim JH (2004a) Preparation and properties of PHEA/chitosan composite hydrogel. Polym J 36:943–948CrossRefGoogle Scholar
  47. Kim JH, Sim SJ, Lee DH, Kim D, Lee YK, Kim JH (2004b) Preparation and properties of biodegradable hydrogel based on glutaraldehyde-crosslinked poly(2-hydroxyethyl aspartamide). J Ind Eng Chem 10:278–282Google Scholar
  48. Kim SI, Min SK, Kim JH (2008) Synthesis and characterization of novel amino acid-conjugated poly(aspartic acid) derivatives. Bull Korean Chem Soc 29:1887–1892CrossRefGoogle Scholar
  49. Kim JH, Son CM, Jeon YS, Choe WS (2011) Synthesis and characterization of poly(aspartic acid) derivatives conjugated with various amino acids. J Polym Res 18:881–890CrossRefGoogle Scholar
  50. Knipe JM, Peppas NA (2014) Multi-responsive hydrogels for drug delivery and tissue engineering applications. Regenerative Biomat, 57–65Google Scholar
  51. Koncic MZ, Zorc B, Novak P (2011) Macromolecular prodrugs. XIII. Hydrosoluble conjugates of 17β-estradiol and estradiol-17β-valerate with polyaspartamide polymer. Acta Pharm 61:465–472PubMedCrossRefPubMedCentralGoogle Scholar
  52. Langer R, Vacanti J (1993) Tissue engineering. Science 260:920–926PubMedCrossRefGoogle Scholar
  53. Langman MJS, Weil J, Wainwright P, Lawson DH, Rawlins MD, Logan RF, Colin-Jones DG (1994) Risks of bleeding peptic ulcer associated with individual non-steroidal anti-inflammatory drugs. Lancet 343:1075–1078PubMedCrossRefPubMedCentralGoogle Scholar
  54. Li X, Shen W, Liu C, Nishimoto SI, Kagiya T (1991) Controlled release of 5-fluorouracil or mitomycin-C from polymer matrix: preparation by radiation polymerization and in vivo evaluation of the anticancer drug/polymer composites. Int J Radiat Appl Instrum C-Radiat Phys Chem 38:377–382Google Scholar
  55. Li Y, Rodrigues J, Tomás H (2012) Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 41:2193–2221PubMedCrossRefPubMedCentralGoogle Scholar
  56. Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3–23CrossRefGoogle Scholar
  57. Liu Y, Jessop PG, Cunningham M, Eckert CA, Liotta CL (2006) Switchable surfactants. Science 313:958–960PubMedCrossRefPubMedCentralGoogle Scholar
  58. Liu J, Yan J, Yuan X, Liu K, Peng J, Fang Y (2008) A novel low-molecular-mass gelator with a redox active ferrocenyl group: tuning gel formation by oxidation. J Colloid Interface Sci 318:397–404PubMedCrossRefPubMedCentralGoogle Scholar
  59. Liu C, Chen Y, Chen J (2010) Synthesis and characteristics of pH-sensitive semi-interpenetrating polymer network hydrogels based on konjac glucomannan and poly(aspartic acid) for in vitro drug delivery. Carbohyd Polym 79:500–506CrossRefGoogle Scholar
  60. Liu M, Su H, Tan T (2012) Synthesis and properties of thermo- and pH-sensitive poly(N-isopropylacrylamide)/polyaspartic acid IPN hydrogels. Carbohydr Polym 87:2425–2431CrossRefGoogle Scholar
  61. Low KC, Wheeler AP, Koskan LP (1996) Commercial poly(aspartic acid) and its uses. Adv Chem Ser 248:99–112CrossRefGoogle Scholar
  62. Lowman AM, Peppas NA, Hydrogels EM (1999) Encyclopedia of controlled drug delivery (Mathiowitz E, ed), pp 397–418Google Scholar
  63. Lu C, Wang X, Wu G, Wang J, Wang Y, Gao H (2013) An injectable and biodegradable hydrogel based on poly(α, β-aspartic acid) derivatives for localized drug delivery. J Biomed Mater Res A 102:628–638PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lu C, Li B, Liu N, Wu G, Gao H, Ma J (2014) A hydrazone crosslinked zwitterionic polypeptide nanogel as a platform for controlled drug delivery. Rsc Adv 4:50301–50311CrossRefGoogle Scholar
  65. Ma Y, Jiang X, Zhuo R (2014) Biodegradable and thermosensitive polyaspartamide derivatives bearing aromatic structures. Mater Lett 121:78–80CrossRefGoogle Scholar
  66. Mahmoud EA, Svensson LO, Olsson SE, Mardch PA (1995) Antichlamydal activity of vaginal secretion. Am J Obstet Gynecol 172:1268–1272PubMedCrossRefPubMedCentralGoogle Scholar
  67. Mandracchia D, Pitarresi G, Palumbo FS, Carlisi B, Giammona G (2004) pH-sensitive hydrogel based on a novel photocross-linkable copolymer. Biomacromol 5:1973–1982CrossRefGoogle Scholar
  68. Mandracchia D, Denora N, Franco M, Pitarresi G, Giammona G, Trapani G (2011) New biodegradable hydrogels based on Inulin and α, β-polyaspartylhydrazide designed for colonic drug delivery: in vitro release of glutathione and oxytocin. J Biomat Sci Polym Ed 22:313–328CrossRefGoogle Scholar
  69. Matheson MS, Mamou A, Silverman J, Rabani J (1973) Reaction of hydroxyl radicals with polyethylene oxide in aqueous solution. J Phys Chem 77:2420CrossRefGoogle Scholar
  70. Matsubara K, Nakato T, Tomida M (1998) End group and irregular structure analysis in thermally prepared sodium polyaspartate by 1H and 13C NMR spectroscopy. Macromolecules 31:1466–1472CrossRefGoogle Scholar
  71. Mellott MB, Searcy K, Pishko MV (2001) Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization. Biomaterials 22:929–941PubMedCrossRefPubMedCentralGoogle Scholar
  72. Meng F, Hennink WE, Zhong Z (2009) Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30:2180–2198PubMedCrossRefPubMedCentralGoogle Scholar
  73. Menyo MS, Hawker CJ, Waite JH (2013) Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol-inspired ligands. Soft Matter 9:10314–10323CrossRefGoogle Scholar
  74. Moon JR, Kim JH (2006) Preparation of biodegradable thermo-responsive polyaspartamides with N-isopropylamine pendent groups (I). Bull Korean Chem Soc 27:1981–1984CrossRefGoogle Scholar
  75. Moon JR, Kim JH (2008) Biodegradable thermo- and pH-responsive hydrogels based on amphiphilic polyaspartamide derivatives containing N,N-diisopropylamine pendants. Macromol Res 16:489–491CrossRefGoogle Scholar
  76. Moon JR, Kim JH (2010) Biodegradable stimuli-responsive hydrogels based on amphiphilic polyaspartamides with tertiary amine pendent groups. Polym Int 59:630–636Google Scholar
  77. Moon JR, Kim BS, Kim J (2006) Preparation and properties of novel biodegradable hydrogel based on cationic polyaspartamide derivative. Bull Korean Chem Soc 27:981CrossRefGoogle Scholar
  78. Moon JR, Park YH, Kim JH (2009) Synthesis and characterization of novel thermo- and pH-responsive copolymers based on amphiphilic polyaspartamides. J Appl Polym Sci 111:998–1004Google Scholar
  79. Moon JR, Kim MW, Kim D, Jeong JH, Kim JH (2010) Synthesis and self-assembly behavior of novel polyaspartamide derivatives for anti-tumor drug delivery. Colloid Polym Sci 289:63–71CrossRefGoogle Scholar
  80. Moon JR, Jeon YS, Chung DJ, Kim D, Kim JH (2011) In situ gelling and drug release behavior from novel temperature-sensitive polyaspartamides. Macromol Res 19(5):515–518Google Scholar
  81. Morita Y, Kaetsu I (1992) Synthesis of stimuli-sensitive hydrogels. Int J Radiat Appl Instrum C-Radiat Phys Chem 39:473–476Google Scholar
  82. Nakato T, Yoshitake M, Matsubara K, Tomida M, Kakuchi T (1998) Relationships between structure and properties of poly(aspartic acid)s. Macromolecules 31:2107–2113CrossRefGoogle Scholar
  83. Nakato T, Oda K, Yoshitake M, Tomida M, Kakuchi T (1999) Synthesis and characterization of poly(aspartic acid) and its derivatives as biodegradable materials. J Macromol Sci Pure Appl Chem 36:949–961CrossRefGoogle Scholar
  84. Némethy A, Solti K, Kiss L, Gyarmati B, Deli MA, Csányi E, Szilágyi A (2013) pH- and temperature-responsive poly(aspartic acid)-l-poly(N-isopropylacrylamide) conetwork hydrogel. Eur Polym J 49:2392–2403CrossRefGoogle Scholar
  85. Neri P, Antoni G, Benbenuti F, Colola F, Gazzei G (1973) Synthesis of α,β-poly [(2-hydroxyethyl)-dl-aspartamide], a new plasma expander. J Med Chem 16:893–897PubMedCrossRefPubMedCentralGoogle Scholar
  86. Park JH, Moon JR, Hong KH, Kim JH (2011) Photo-crosslinked polyaspartamide hybrid gel containing thermo-responsive Pluronic triblock copolymer. J Polym Res 18:273–278CrossRefGoogle Scholar
  87. Peng F, Li G, Liu X, Wu S, Tong Z (2008) Redox-responsive gel-sol/sol-gel transition in poly(acrylic acid) aqueous solution containing Fe(III) ions switched by light. J Am Chem Soc 130:16166–161667PubMedCrossRefPubMedCentralGoogle Scholar
  88. Petty GW (2006) A first course in atmospheric radiation, 2nd edn. Sundog PublishingGoogle Scholar
  89. Phan L, Jessop PG (2009) Switching the hydrophilicity of a solute. Green Chem 11:307–308CrossRefGoogle Scholar
  90. Pitarresi G, Licciardi M, Craparo EF, Calderaro E, Spadaro G, Giammona G (2002) Microgels of polyaspartamide and poly(ethylene glycol) derivatives obtained by γ-irradiation. Radiat Phys Chem 65:159–167CrossRefGoogle Scholar
  91. Pitarresi G, Palumbo FS, Giammona G, Casadei MA, Moracci FM (2003) Biodegradable hydrogels obtained by photocrosslinking of dextran and polyaspartamide derivatives. Biomaterials 24:4301–4313PubMedCrossRefPubMedCentralGoogle Scholar
  92. Pitarresi G, Casadei MA, Mandracchia D (2007) Photocrosslinking of dextran and polyaspartamide derivatives: a combination suitable for colon-specific drug delivery. J Control Release 119:328–338PubMedCrossRefPubMedCentralGoogle Scholar
  93. Pitarresi G, Palumbo FS, Fiorica C, Calascibetta F, Giammona G (2010) Electrospinning of α, β-poly(N-2-hydroxyethyl)-dl-aspartamide-graft-polylactic acid to produce a fibrillar scaffold. Eur Polym J 46(2):181–184CrossRefGoogle Scholar
  94. Pitarresi G, Fiorica C, Palumbo FS, Rigogliuso S, Ghersi G, Giammona G (2014) Heparin functionalized polyaspartamide/polyester scaffold for potential blood vessel regeneration. J Biomed Mat Res A 102A:1334–1341CrossRefGoogle Scholar
  95. Pivcova H, Saudek V, Drobnik J, Vlasak J (1981) Nmr study of poly(aspartic acid). I. α- and β-peptide bonds in poly(aspartic acid) prepared by thermal polycondensation. Biopolymers 20:1605–1614CrossRefGoogle Scholar
  96. Pivcova H, Saudek V, Drobnik H (1982) 13C nmr study of the structure of poly (aspartic acid). Polymer 23:1237–1241CrossRefGoogle Scholar
  97. Place ES, George JH, Williams CK, Stevens MM (2009) Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 38:1139–1151PubMedCrossRefPubMedCentralGoogle Scholar
  98. Ramírez-Fuentes YS, Bucio E, Burillo G (2008) Thermo and pH-sensitive copolymer based on acrylic acid and N-isopropylacrylamide grafted onto polypropylene. Polym Bull 60:79–87CrossRefGoogle Scholar
  99. Rosiak JM, Ulanski P, Pajewski LA, Yoshii F, Makuuchi K (1995) Radiation formation of hydrogels for biomedical purpose. Some remarks and comments. Radiat Phys Chem 46:161–168CrossRefGoogle Scholar
  100. Ross RJ, Mazo GY, Mazo J (2001) New methods in the synthesis of thermal poly (aspartates). ACS symposium series, vol 786, Chap 11, pp 172–181Google Scholar
  101. Safranj A, Kano S, Yoshida M, Omichi H, Katakai R, Suzuki M (1995) Functional polymeric microspheres synthesized by radiation polymerization. Radiat Phys Chem 46:203–206CrossRefGoogle Scholar
  102. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670PubMedCrossRefPubMedCentralGoogle Scholar
  103. Scranton AB, Bowman CN, Peiffer RW (1997) Photopolymerization: fundamentals and applications. ACS symposium series, vol 673Google Scholar
  104. Son CM, Jeon YS, Kim JH (2011) Preparation and properties of biodegradable superabsorbent gels based on poly(aspartic acid)s with amino acid pendants. Polym-Korea 35:558–564CrossRefGoogle Scholar
  105. Soppimath KS, Kulkarni AR, Aminabhavi TM (2001) Chemically modified polyacrylamide-g-guar gum-based crosslinked anionic microgels as pH-sensitive drug delivery systems: preparation and characterization. J Control Release 75:331–345PubMedCrossRefPubMedCentralGoogle Scholar
  106. Sun S, Cao H, Su H, Tan H (2009) Preparation and characterization of a novel injectable in situ cross-linked hydrogel. Polym Bull 62:699–711CrossRefGoogle Scholar
  107. Tachibana Y, Kurisawa M, Uyama H, Kakuchi T, Kobayashi S (2003a) Biodegradable thermoresponsive poly(amino acid)s. Chem Commun, 106–107Google Scholar
  108. Tachibana Y, Kurisawa M, Uyama H, Kakuchi T, Kobayashi S (2003b) Thermoresponsive hydrogels based on biodegradable poly(amino acid)s. Chem Lett 32:374–375CrossRefGoogle Scholar
  109. Takeuchi Y, Uyama H, Tomoshige N, Watanabe E, Tachibana Y, Kobayashi S (2006) Injectable thermoreversible hydrogels based on amphiphilic poly(amino acid)s. J Polym Sci A-Polym Chem 44:671–675CrossRefGoogle Scholar
  110. Tang Y, Wheeler AP (2001) Environmental factors that influence biodegradation of thermal poly(aspartate). ACS symposium series, vol 786, pp 157–171Google Scholar
  111. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847PubMedCrossRefPubMedCentralGoogle Scholar
  112. Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  113. Thombre SM, Sarwade BD (2005) Synthesis and biodegradability of polyaspartic acid: a critical review. J Macromol Sci A 42:1299–1315CrossRefGoogle Scholar
  114. Tomida M, Nakato T, Kuramochi M, Shibata M, Matsunami S, Kakuchi T (1996) Novel method of synthesizing poly(succinimide) and its copolymeric derivatives by acid-catalysed polycondensation of l-aspartic acid. Polymer 37:4435–4437CrossRefGoogle Scholar
  115. Torma V, Gyenes T, Szakács Z, Zrínyi M (2010) A novel potentiometric method for the determination of real crosslinking ratio of poly(aspartic acid) gels. Acta Biomater 6:1186–1190PubMedCrossRefPubMedCentralGoogle Scholar
  116. Tran BN, Bui QT, Jeon YS, Kim JH (2015a) Preparation and characterization of CO2-responsive poly(amino acid) derivatives with guanidine group. Polym Bull 72:2605–2620CrossRefGoogle Scholar
  117. Tran BN, Kim JY, Kim YC, Kim YJ, Kim JH (2015b) CO2-responsive swelling behavior and metal-ion adsorption properties in novel histamine-conjugated polyaspartamide hydrogel. J App Polym Sci 133:43305Google Scholar
  118. Tripodo G, Pitarresi G, Cavallaro G (2009) Controlled release of IgG by novel UV induced polysaccharide/poly(amino acid) hydrogels. Macromol Biosci 9:393–401PubMedCrossRefPubMedCentralGoogle Scholar
  119. Umeda S, Nakade H, Kakuchi T (2011) Preparation of superabsorbent hydrogels from poly(aspartic acid) by chemical crosslinking. Polym Bull 67:1285–1292CrossRefGoogle Scholar
  120. Vashist A, Vashist A, Gupta YK, Ahmad S (2014) Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2:147–166CrossRefGoogle Scholar
  121. Wang B, Jeon YS, Park HS, Kim YJ, Kim JH (2015) Mussel-mimetic self-healing polyaspartamide derivative gel via boron-catechol interactions. Express Polym Lett 9:799–808CrossRefGoogle Scholar
  122. Ward JH, Peppas NA (2001) Preparation of controlled release systems by free-radical UV polymerization in the presence of a drug. J Control Release 71:183–192PubMedCrossRefPubMedCentralGoogle Scholar
  123. Wolk SK, Swift G, Paik YH, Yocom KM, Smith RL, Simon ES (1994) One- and two-dimensional nuclear magnetic resonance characterization of poly(aspartic acid) prepared by thermal polymerization of l-aspartic acid. Macromolecules 27:7613–7620CrossRefGoogle Scholar
  124. Yan Q, Zhao Y (2014) Block copolymer self-assembly controlled by the “green” gas stimulus of carbon dioxide. Chem Commun 50:11631–11641CrossRefGoogle Scholar
  125. Yang HM, Park CW, Woo MA, Kim MI, Jo YM, Park HG, Kim JD (2010) HER2/neu antibody conjugated poly(amino acid)-coated iron oxide nanoparticles for breast cancer MR imaging. Biomacromol 11:2866–2872CrossRefGoogle Scholar
  126. Yoshimura T, Ochi Y, Fujioka R (2005) Synthesis and properties of hydrogels based on polyaspartamides with various pendants. Polym Bull 55:377–383CrossRefGoogle Scholar
  127. Zhao L, Zhu L, Liu F, Shan D, Wang Q (2011) pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel. Int J Pharm 410:83–91PubMedCrossRefPubMedCentralGoogle Scholar
  128. Zhao C, He P, Xiao C, Gao X, Zhuang X, Chen X (2012) Photo-cross-linked biodegradable thermo- and pH-responsive hydrogels for controlled drug release. J Appl Polym Sci 123:2923–2932CrossRefGoogle Scholar
  129. Zhou H, Zhang WZ, Wang YM, Qu JP, Lu XB (2009) N-heterocyclic carbene functionalized polymer for reversible fixation-release of CO2. Macromolecules 42:5419–5421CrossRefGoogle Scholar
  130. Zrinyi M, Gyenes T, Juriga D, Kim JH (2013) Volume change of double cross-linked poly(aspartic acid) hydrogels induced by cleavage of one of the crosslinks. Acta Biomater 9:5122–5131PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations