Advertisement

Hydrogels pp 259-295 | Cite as

Self-assembling Hydrogels from pH-Responsive Ionic Block Copolymers

  • Constantinos Tsitsilianis
Chapter
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)

Abstract

Hydrogels are three-dimensional (3D) soft materials that consist of a solid matrix (usually a three-dimensional network) entrapping high content of water (more than 90 wt%). This remarkable feature makes them suitable for many applications especially in medicine as drug carriers and tissue engineering scaffolds. As far as polymeric matrices are concerned, two main strategies for achieving 3D network structures can be distinguished. The first one relies on the covalent bonding of hydrophilic polymer chains, leading to hydrogels referred as chemical networks. The second approach deals with the self-assembly of tailor-made segmented macromolecules via reversible weak interactions, namely hydrophobic, ionic, π–π staking, and so on, that leads to the so-called self-assembling hydrogels. The use of reversible (physical) cross-links allows the design of “smart” soft materials that can response to their environment (e.g., pH, ionic strength, temperature, shear). This chapter is devoted to the self-assembling hydrogels arising from associative block copolymers bearing ionic or ionogenic blocks, namely polyelectrolytes or polyampholytes. This specific feature endows the hydrogels with responsiveness to pH and ionic strength which make them attractive soft materials for potential biomedical applications.

Keywords

Hydrogel Block copolymers Self-assembly pH responsive 3D network Polyelectrolyte Polyampholyte 

References

  1. Angelopoulos SA, Tsitsilianis C (2006) Thermo-reversible hydrogels based on poly(N,N-diethylacrylamide)-block-poly(acrylicacid)-block-poly(N,N-diethyl acrylamide) double hydrophilic triblock copolymer. Macromol Chem Phys 207:2188–2194 CrossRefGoogle Scholar
  2. Audu DJ, Gopez JD, Krogstad DV, Lynd NA, Kramer EJ, Hawker CJ, Fredickson GH (2015) Phase behavior of electrostatically complexed polyelectrolyte gels using an embedded fluctuation model. Soft Matter 2015:1214–1225CrossRefGoogle Scholar
  3. Borisova O, Billon L, Zaremski M, Grassl B, Bakaeva Z, Lapp A, Stepanek P, Borisov O (2011) pH-triggered reversible sol–gel transition in aqueous solutions of amphiphilic gradient copolymers. Soft Matter 7:10824–10833CrossRefGoogle Scholar
  4. Bossard F, Sfika V, Tsitsilianis C (2004) Rheological properties of physical gel formed by triblock polyampholyte in salt-free aqueous solutions. Macromolecules 37:3899–3904CrossRefGoogle Scholar
  5. Bossard F, Tsitsilianis C, Yannopoulos SN, Petekidis G, Sfika V (2005) A novel thermo-thickening phenomenon exhibited by a triblock polyampholyte in aqueous salt-free solutions. Macromolecules 38:2883–2888CrossRefGoogle Scholar
  6. Bossard F, Aubry T, Gotzamanis GT, Tsitsilianis C (2006) pH-Tunable rheological properties of a telechelic cationic polyelectrolyte reversible hydrogel. Soft Matter 2:510–516CrossRefGoogle Scholar
  7. Charbonneau C, Chassenieux C, Colombani O, Nicolai T (2011) Controlling the dynamics of self-assembled triblock copolymer networks via the pH. Macromolecules 44:4487–4495CrossRefGoogle Scholar
  8. Chassenieux C, Tsitsilianis C (2016) Recent trends on pH/thermo-responsive self-assembling hydrogels: from polyions to peptide-based polymeric gelators. Soft Matter 12:1344–1359CrossRefPubMedGoogle Scholar
  9. Cui H, Zhuang X, He C, Wei Y, Chen X (2015) High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications. Acta Biomater 11:183–190CrossRefPubMedGoogle Scholar
  10. Dyakonova MA, Stavrouli N, Popescu M-T, Kyriakos K, Grillo I, Philipp M, Jaksch S, Tsitsilianis C, Papadakis CM (2014) Physical Hydrogels via charge driven self-organization of a triblock polyampholyte: rheological and structural investigations. Macromolecules 47:7561–7572CrossRefGoogle Scholar
  11. Dyakonova M, Berezkin AV, Kyriakos K, Gkermpoura S, Popescu M-T, Filippov SK, Stepanek P, Di Z, Tsitsilianis C, Papadakis CM (2015) Salt-induced changes in triblock polyampholyte hydrogels: computer simulations and rheological, structural, and dynamic characterization. Macromolecules 48:8177–8189CrossRefGoogle Scholar
  12. Dyakonova MA, Gotzamanis G, Niebuur B-J, Vishnevetskaya NS, Raftopoulos KN, Di Z, Filippov SK, Tsitsilianis C, Papadakis CM (2017) pH Responsiveness of hydrogels formed by telechelic polyampholytes. Soft Matter 13:3568–3579Google Scholar
  13. Ghelichi M, Qazvini NT (2016) Self-organization of hydrophobic-capped triblock copolymers with polyelectrolyte midblock: a coarse-grained molecular dynamics simulation study. Soft Matter 12:4611–4620CrossRefPubMedGoogle Scholar
  14. Gotzamanis GT, Tsitsilianis C, Hadjiyannakou SC, Patrickios CS, Lupitskyy R, Minko S (2006) Cationic telechelic polyelectrolytes: synthesis by group transfer polymerization and self-organization in aqueous media. Macromolecules 39:678–683CrossRefGoogle Scholar
  15. Gotzamanis GT, Papadimitriou K, Tsitsilianis C (2016) Design of a C-b-(A-co-B)-b-C telechelic polyampholyte pH-responsive gelator. Polym Chem 7:2121–2129CrossRefGoogle Scholar
  16. Halperin A, Alexander S (1989) Polymeric micelles: their relaxation kinetics. Macromolecules 22:2403–2412CrossRefGoogle Scholar
  17. Henderson KJ, Tian TC, Otim KJ, Shull KR (2010) Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43:6193–6201CrossRefGoogle Scholar
  18. Hietala S, Monomen P, Strandman S, Järvi P, Torkkeli M, Jankova K, Hvilsted S, Tenhu H (2007) Synthesis and rheological properties of an associative star polymers in aqueous solutions. Polymer 48:4087–4096Google Scholar
  19. Hietala S, Strandman S, Järvi P, Torkkeli M, Jankova K, Hvilsted S, Tenhu H (2009) Rheological properties of associative star polymers in aqueous solutions: effect of hydrophobe length and polymer topology. Macromolecules 42:1726–1732Google Scholar
  20. Hunt JN, Feldman KE, Lynd NA, Deek J, Campos LM, Spruell JM, Hernandez BM, Kramer EJ, Hawker CJ (2011) Tunable, high modulus hydrogels driven by ionic coacervation. Adv Mater 23:2327–2331CrossRefPubMedGoogle Scholar
  21. Iatridi Z, Mattheolabakis G, Avgoustakis K, Tsitsilianis C (2011) Self-assembly and drug delivery studies of pH/thermo-sensitive polyampholytic (A-co-B)-b-C-b-(A-co-B) segmented terpolymers. Soft Matter 7:11160–11168CrossRefGoogle Scholar
  22. Ishii S, Kaneko J, Nagasaki Y (2015) Dual stimuli-responsive redox-active injectable gel by polyion complex based flower micelles for biomedical applications. Macromolecules 48:3088–3094CrossRefGoogle Scholar
  23. Kahveci MU, Yagci Y, Avgeropoulos A, Tsitsilianis C (2016) Polymeric materials—well defined block copolymers. In: Reference module in materials science and materials engineering. Elsevier, AmsterdamGoogle Scholar
  24. Katsampas I, Tsitsilianis C (2005) Hierarchical self-organization of ABC terpolymer constituted of a long polyelectrolyte end-capped by different hydrophobic blocks. Macromolecules 38:1307–1314CrossRefGoogle Scholar
  25. Katsampas I, Roiter Y, Minko S, Tsitsilianis C (2005) Multifunctional stimuli responsive ABC terpolymers: from 3-compartment micelles to 3-dimentional network. Macromol Rapid Commun 26:1371–1376CrossRefGoogle Scholar
  26. Koetting MC, Peters JP, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng R 93:1–49CrossRefGoogle Scholar
  27. Krogstad DV, Lynd NA, Choi S-H, Spruell JM, Hawker CJ, Kramer EJ, Tirrell MV (2013) Effects of polymer and salt concentration on the structure and properties of triblock copolymer coacervate hydrogels. Macromolecules 46:1512–1518CrossRefGoogle Scholar
  28. Krogstad DV, Lynd NA, Miyajim D, Gopez J, Hawker CJ, Kramer EJ, Tirrell MV (2014) Structural evolution of polyelectrolyte complex core micelles and ordered-phase bulk materials. Macromolecules 47:8026–8032CrossRefGoogle Scholar
  29. Kujawa P, Audibert-Hayet A, Selb J, Candau F (2004) Rheological properties of multisticker associative polyelectrolytes in semidilute aqueous solutions. J Polym Sci Part B Polym Phys 42:1640–1655CrossRefGoogle Scholar
  30. Kujawa P, Audibert-Hayet A, Selb J, Candau F (2006) Effect of ionic strength on the rheological properties of multisticker associative polyelectrolytes. Macromolecules 39:384–392CrossRefGoogle Scholar
  31. Kumar SK, Panagiotopoulos AZ (1999) Thermodynamics of reversibly associating polymer solutions. Phys Rev Lett 82:5060–5064CrossRefGoogle Scholar
  32. Lemmers M, Sprakel J, Voets IK, van der Gucht J, Cohen Stuart MA (2010) Multiresponsive reversible gels based on charge-driven assembly. Angew Chem Int Ed 49:708–711CrossRefGoogle Scholar
  33. Lemmers M, Spruijt E, Beun L, Fokkink R, Leermakers F, Portale G, Cohen Stuart MA, van der Gucht J (2012) The influence of charge ratio on transient networks of polyelectrolyte complex micelles. Soft Matter 8:104–117CrossRefGoogle Scholar
  34. Li Y, Sun Z, Shi T, An L (2004) Conformation studies on sol-gel transition in triblock copolymer solutions. J Chem Phys 121:1133–1140CrossRefPubMedGoogle Scholar
  35. Li Y, Tang Y, Narain R, Lewis AL, Armes SP (2005) Biomimetic stimulus-responsive star diblock gelators. Langmuir 21:9946–9954CrossRefPubMedGoogle Scholar
  36. Lin Z, Cao S, Chen X, Wu W, Li J (2013) Thermoresponsive hydrogels from phosphorylated ABA triblock copolymers: a potential scaffold for bone tissue engineering. Biomacromolecules 14:2206–2214CrossRefPubMedGoogle Scholar
  37. Lomas H, Massignani M, Abdullah KA, Canton I, Lo Presti C, MacNeil S, Du J, Blanazs A, Madsen J, Armes SP, Lewis AL, Battaglia G (2008) Non-cytotoxic polymer vesicles for rapid and efficient intracellular delivery. Faraday Discuss 139:143–159CrossRefPubMedGoogle Scholar
  38. Ma Y, Tang Y, Billingham NC, Armes SP (2003) Synthesis of biocompatible, stimuli-responsive, physical gels based on ABA triblock copolymers. Biomacromolecules 4:864–868CrossRefPubMedGoogle Scholar
  39. Matyjaszewski K, Gnanou Y, Leibler L (2007) Macromolecular engineering: precise synthesis, materials properties, applications. Wiley-vch, WeinheimGoogle Scholar
  40. Medsen J, Armes SP (2012) (Meth)acrylic stimulus-responsive block copolymer hyrogels. Soft Matter 8:592–605CrossRefGoogle Scholar
  41. Nguyen-Misra M, Mattice WL (1995) Micellization and gelation of symmetric triblock copolymers with insoluble blocks. Macromolecules 28:1444–1457CrossRefGoogle Scholar
  42. Nicolai T, Colombani O, Chassenieux Ch (2010) Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter 6:3111–3118CrossRefGoogle Scholar
  43. Popescu M-T, Athanasoulias I, Tsitsilianis C, Hadjiantoniou NA, Patrickios CS (2010) Reversible hydrogels from amphiphilic polyelectrolyte model multiblock copolymers: the importance of macromolecular topology. Soft Matter 6:5417–5424CrossRefGoogle Scholar
  44. Popescu M-T, Mourtas S, Pampalakis G, Antimisiaris SG, Tsitsilianis C (2011) pH-Responsive hydrogel/liposome soft nanocomposites for tuning drug release. Biomacromolecules 12:3023–3030CrossRefPubMedGoogle Scholar
  45. Popescu M-T, Tsitsilianis C, Papadakis CM, Adelsberger J, Balog S, Busch P, Hadjiantoniou NA, Patrickios CS (2012) Hydrogels: an unusual pH-response. Macromolecules 45:3523–3530CrossRefGoogle Scholar
  46. Potemkin II, Vasilevskaya VV, Khokhlov AR (1999) Associating polyelectrolytes: finite size cluster stabilization versus gel formation. J Chem Phys 11:2809–2817CrossRefGoogle Scholar
  47. Reinicke S, Schmelz J, Lapp A, Karg M, Hellweg T, Schmalz H (2009) Smart hydrogels based on double responsive triblock terpolymers. Soft Matter 5:2648–2657Google Scholar
  48. Rubinstein M, Dobrynin AV (1997) Solutions of associative polymers. Trends Polym Sci 5:181–186Google Scholar
  49. Schmalz A, Schmalz H, Müller AHE (2012) Smart hydrogels based on responsive star-block copolymers. Soft Matter 8:9436–9445CrossRefGoogle Scholar
  50. Sfika V, Tsitsilianis C (2003) Association phenomena of poly(acrylic acid)-b-poly(2-vinylpyridine)-b-poly(acrylic acid) triblock polyampholyte in aqueous solutions: from transient network to compact micelles. Macromolecules 36:4983–4988CrossRefGoogle Scholar
  51. Shedge A, Colombani O, Nicolai T, Chassenieux C (2014) Charge dependent dynamics of transient networks and hydrogels formed by self-assembled pH-sensitive triblock copolyelectrolytes. Macromolecules 47:2439–2444CrossRefGoogle Scholar
  52. Stavrouli N, Aubry T, Tsitsilianis C (2008a) Polymer rheological properties of ABA telechelic polyelectrolyte and ABA polyampholyte reversible hydrogels: a comparative study. Polymer 49:1249–1256CrossRefGoogle Scholar
  53. Stavrouli N, Katsampas I, Angelopoulos S, Tsitsilianis C (2008b) pH/Thermo-sensitive hydrogels formed at low pH by a PMMA-PAA-P2VP-PAA-PMMA pentablock terpolymer. Macromol Rapid Commun 29:130–135CrossRefGoogle Scholar
  54. Taktak FF, Bütün V (2010) Synthesis and physical gels of pH- and thermo responsive tertiary amine methacrylate based ABA triblock copolymers and drug release studies. Polymer 51:3618–3626CrossRefGoogle Scholar
  55. Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  56. Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRefGoogle Scholar
  57. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847CrossRefPubMedGoogle Scholar
  58. Tsitsilianis C (2010) Responsive reversible hydrogels from associative “smart” macromolecules. Soft Matter 6:2372–2388CrossRefGoogle Scholar
  59. Tsitsilianis C, Iliopoulos I (2002) Viscoelastic properties of physical gels formed by associative telechelic polyelectrolytes in aqueous media. Macromolecules 35:3662–3667CrossRefGoogle Scholar
  60. Tsitsilianis C, Iliopoulos I, Ducouret G (2000a) An associative polyelectrolyte end-capped with short polystyrene chains. Synthesis and rheological behavior. Macromolecules 33:2936–2943CrossRefGoogle Scholar
  61. Tsitsilianis C, Katsampas I, Sfika V (2000b) ABC heterotelechelic associative polyelectrolytes. Rheological behavior in aqueous media. Macromolecules 33:9054–9059CrossRefGoogle Scholar
  62. Tsitsilianis C, Roiter Y, Katsampas I, Minko M (2008a) Diversity of nanostructured self-assemblies from a pH-responsive ABC terpolymer in aqueous media. Macromolecules 41:925–934CrossRefGoogle Scholar
  63. Tsitsilianis C, Stavrouli N, Bocharova V, Angelopoulo S, Kiriy A, Katsampas I, Stamm M (2008b) Stimuli responsive associative polyampholytes based on ABCBA pentablock terpolymer architecture. Polymer 49:2996–3006CrossRefGoogle Scholar
  64. Tsitsilianis C, Aubry T, Iliopoulos I, Norvez S (2010) Effect of DMF on the rheological properties of telechelic polyelectrolyte hydrogels. Macromolecules 43:7779–7784CrossRefGoogle Scholar
  65. Van Tomme SR, Storm G, Hennink WE (2008) In situ gelling hydrogels for pharmaceutical and biomedical applications. Intern. J. of Pharmaceutics 355:1–18CrossRefGoogle Scholar
  66. Winnik MA, Yekta A (1997) Associative polymers in aqueous solution. Curr Opin Coll Interface Sci 2:424–436CrossRefGoogle Scholar
  67. Xu C, Kopeček J (2007) Self-assembling hydrogels. J Polym Bull 58:53–63CrossRefGoogle Scholar
  68. Zhang R, Shi T, An L, Sun Z, Tong T (2010) Conformational study on sol-gel transition in telechelic polyelectrolytes. J Phys Chem B 114:3449–3456CrossRefPubMedGoogle Scholar
  69. Zhang R, Shi T, Li H, An L (2011) Effect of the concentration on sol-gel transition in telechelic polyelectrolytes. J Chem Phys 134(034903):1–7Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations