Advertisement

Pre- and Intraprocedure Computed Tomography-Based Assessment of CTO for the Successful CTO Intervention

  • Jin-Ho ChoiEmail author
  • Byeong-Keuk Kim
  • Sanghoon Shin
Chapter

Abstract

Despite vast advances in the devices and interventional technique, the overall success rate of percutaneous coronary intervention for chronic total occlusion (CTO) is still an unsatisfactory 70–80%. Compared to successful opening of CTO, failed attempt for CTO has resulted in poor long-term outcome as well as higher contrast dye usage, radiation exposure, and complication rate [1–3]. The presence of CTO is one of the major causes of selecting surgical bypass surgery instead of percutaneous coronary intervention.

References

  1. 1.
    George S, Cockburn J, Clayton TC, Ludman P, Cotton J, Spratt J, Redwood S, de Belder M, de Belder A, Hill J, Hoye A, Palmer N, Rathore S, Gershlick A, Di Mario C, Hildick-Smith D, British Cardiovascular Intervention Society, National Institute for Cardiovascular Outcomes Research. Long-term follow-up of elective chronic total coronary occlusion angioplasty: analysis from the U.K. Central Cardiac Audit Database. J Am Coll Cardiol. 2014;64:235–43.CrossRefGoogle Scholar
  2. 2.
    Patel VG, Brayton KM, Tamayo A, Mogabgab O, Michael TT, Lo N, Alomar M, Shorrock D, Cipher D, Abdullah S, Banerjee S, Brilakis ES. Angiographic success and procedural complications in patients undergoing percutaneous coronary chronic total occlusion interventions: a weighted meta-analysis of 18,061 patients from 65 studies. JACC Cardiovasc Interv. 2013;6:128–36.CrossRefGoogle Scholar
  3. 3.
    Brilakis ES, Banerjee S, Karmpaliotis D, Lombardi WL, Tsai TT, Shunk KA, Kennedy KF, Spertus JA, Holmes DR Jr, Grantham JA. Procedural outcomes of chronic total occlusion percutaneous coronary intervention: a report from the NCDR (National Cardiovascular Data Registry). JACC Cardiovasc Interv. 2015;8:245–53.CrossRefGoogle Scholar
  4. 4.
    Choi JH, Kim EK, Kim SM, Kim H, Song YB, Hahn JY, Choi SH, Gwon HC, Lee SH, Choe YH, Oh JK. Noninvasive discrimination of coronary chronic total occlusion and subtotal occlusion by coronary computed tomography angiography. JACC Cardiovasc Interv. 2015;8:1143–53.CrossRefGoogle Scholar
  5. 5.
    Choi JH, Song YB, Hahn JY, Choi SH, Gwon HC, Cho JR, Jang Y, Choe Y. Three-dimensional quantitative volumetry of chronic total occlusion plaque using coronary multidetector computed tomography. Circ J. 2011;75:366–75.CrossRefGoogle Scholar
  6. 6.
    Choi JH, Kim EK, Kim SM, Song YB, Hahn JY, Choi SH, Gwon HC, Lee SH, Choe YH, Oh JK. Noninvasive evaluation of coronary collateral arterial flow by coronary computed tomographic angiography. Circ Cardiovasc Imaging. 2014;7:482–90.CrossRefGoogle Scholar
  7. 7.
    Choi JH, Koo BK, Yoon YE, Min JK, Song YB, Hahn JY, Choi SH, Gwon HC, Choe YH. Diagnostic performance of intracoronary gradient-based methods by coronary computed tomography angiography for the evaluation of physiologically significant coronary artery stenoses: a validation study with fractional flow reserve. Eur Heart J Cardiovasc Imaging. 2012;13:1001–7.CrossRefGoogle Scholar
  8. 8.
    Choi JH, Chang SA, Choi JO, Song YB, Hahn JY, Choi SH, Lee SC, Lee SH, Oh JK, Choe Y, Gwon HC. Frequency of myocardial infarction and its relationship to angiographic collateral flow in territories supplied by chronically occluded coronary arteries. Circulation. 2013;127:703–9.CrossRefGoogle Scholar
  9. 9.
    Sakakura K, Nakano M, Otsuka F, Yahagi K, Kutys R, Ladich E, Finn AV, Kolodgie FD, Virmani R. Comparison of pathology of chronic total occlusion with and without coronary artery bypass graft. Eur Heart J. 2014;35:1683–93.CrossRefGoogle Scholar
  10. 10.
    Choi JH, Kim EK, Kim SM, Song YB, Hahn JY, Choi SH, Gwon HC, Lee SH, Choe YH, Oh JK. Non-invasive discrimination of coronary chronic total occlusion and subtotal occlusion by coronary computed tomography angiography. JACC Cardiovasc Interv. 2015;8:1143–53.CrossRefGoogle Scholar
  11. 11.
    Zhang J, Li Y, Li M, Pan J, Lu Z. Collateral vessel opacification with CT in patients with coronary total occlusion and its relationship with downstream myocardial infarction. Radiology. 2014;271:703–10.CrossRefGoogle Scholar
  12. 12.
    Li M, Zhang J, Pan J, Lu Z. Obstructive coronary artery disease: reverse attenuation gradient sign at CT indicates distal retrograde flow—a useful sign for differentiating chronic total occlusion from subtotal occlusion. Radiology. 2013;266:766–72.CrossRefGoogle Scholar
  13. 13.
    Choi JH, Min JK, Labounty TM, Lin FY, Mendoza DD, Shin DH, Ariaratnam NS, Koduru S, Granada JF, Gerber TC, Oh JK, Gwon HC, Choe YH. Intracoronary transluminal attenuation gradient in coronary CT angiography for determining coronary artery stenosis. JACC Cardiovasc Imaging. 2011;4:1149–57.CrossRefGoogle Scholar
  14. 14.
    Christopoulos G, Kandzari DE, Yeh RW, Jaffer FA, Karmpaliotis D, Wyman MR, Alaswad K, Lombardi W, Grantham JA, Moses J, Christakopoulos G, Tarar MN, Rangan BV, Lembo N, Garcia S, Cipher D, Thompson CA, Banerjee S, Brilakis ES. Development and validation of a novel scoring system for predicting technical success of chronic total occlusion percutaneous coronary interventions: the PROGRESS CTO (Prospective Global Registry for the Study of Chronic Total Occlusion Intervention) score. JACC Cardiovasc Interv. 2016;9:1–9.CrossRefGoogle Scholar
  15. 15.
    Alessandrino G, Chevalier B, Lefevre T, Sanguineti F, Garot P, Unterseeh T, Hovasse T, Morice MC, Louvard Y. A clinical and angiographic scoring system to predict the probability of successful first-attempt percutaneous coronary intervention in patients with total chronic coronary occlusion. JACC Cardiovasc Interv. 2015;8:1540–8.CrossRefGoogle Scholar
  16. 16.
    Yu CW, Lee HJ, Suh J, Lee NH, Park SM, Park TK, Yang JH, Song YB, Hahn JY, Choi SH, Gwon HC, Lee SH, Choe YH, Kim SM, Choi JH. Coronary computed tomography angiography predicts guidewire crossing and success of percutaneous intervention for chronic total occlusion: Korean Multicenter CTO CT Registry Score as a tool for assessing difficulty in chronic total occlusion percutaneous coronary intervention. Circ Cardiovasc Imaging. 2017;10:e005800.CrossRefGoogle Scholar
  17. 17.
    Safian RD, Freed MS. The manual of interventional cardiology. 3rd ed. Royal Oak, MI: Physician’s Press; 2001.Google Scholar
  18. 18.
    Tan KH, Sulke N, Taub NA, Watts E, Karani S, Sowton E. Determinants of success of coronary angioplasty in patients with a chronic total occlusion: a multiple logistic regression model to improve selection of patients. Br Heart J. 1993;70:126–31.CrossRefGoogle Scholar
  19. 19.
    Olivari Z, Rubartelli P, Piscione F, Ettori F, Fontanelli A, Salemme L, Giachero C, Di Mario C, Gabrielli G, Spedicato L, Bedogni F. Immediate results and one-year clinical outcome after percutaneous coronary interventions in chronic total occlusions: data from a multicenter, prospective, observational study (TOAST-GISE). J Am Coll Cardiol. 2003;41:1672–8.CrossRefGoogle Scholar
  20. 20.
    Noguchi T, Miyazaki MS, Morii I, Daikoku S, Goto Y, Nonogi H. Percutaneous transluminal coronary angioplasty of chronic total occlusions. Determinants of primary success and long-term clinical outcome. Catheter Cardiovasc Interv. 2000;49:258–64.CrossRefGoogle Scholar
  21. 21.
    Morino Y, Abe M, Morimoto T, Kimura T, Hayashi Y, Muramatsu T, Ochiai M, Noguchi Y, Kato K, Shibata Y, Hiasa Y, Doi O, Yamashita T, Hinohara T, Tanaka H, Mitsudo K, Investigators JCR. Predicting successful guidewire crossing through chronic total occlusion of native coronary lesions within 30 minutes: the J-CTO (Multicenter CTO Registry in Japan) score as a difficulty grading and time assessment tool. JACC Cardiovasc Interv. 2011;4:213–21.CrossRefGoogle Scholar
  22. 22.
    Opolski MP, Achenbach S, Schuhback A, Rolf A, Mollmann H, Nef H, Rixe J, Renker M, Witkowski A, Kepka C, Walther C, Schlundt C, Debski A, Jakubczyk M, Hamm CW. Coronary computed tomographic prediction rule for time-efficient guidewire crossing through chronic total occlusion: insights from the CT-RECTOR Multicenter Registry (computed tomography registry of chronic total occlusion revascularization). JACC Cardiovasc Interv. 2015;8:257–67.CrossRefGoogle Scholar
  23. 23.
    Luo C, Huang M, Li J, Liang C, Zhang Q, Liu H, Liu Z, Qu Y, Jiang J, Zhuang J. Predictors of interventional success of antegrade PCI for CTO. JACC Cardiovasc Imaging. 2015;8:804–13.CrossRefGoogle Scholar
  24. 24.
    Rolf A, Werner GS, Schuhback A, Rixe J, Mollmann H, Nef HM, Gundermann C, Liebetrau C, Krombach GA, Hamm CW, Achenbach S. Preprocedural coronary CT angiography significantly improves success rates of PCI for chronic total occlusion. Int J Cardiovasc Imaging. 2013;29:1819–27.CrossRefGoogle Scholar
  25. 25.
    Kim BK, Sumitsuji S, Cho I, Hong MK, Kim JS, HJ C, Jang Y. Role of intraprocedural coronary computed tomographic angiography in percutaneous coronary intervention of chronic total occlusion. EuroIntervention. 2016;11:1400.CrossRefGoogle Scholar
  26. 26.
    Kim BK, Cho I, Hong MK, Chang HJ, Shin DH, Kim JS, Shin S, Ko YG, Choi D, Jang Y. Usefulness of intraprocedural coronary computed tomographic angiography during intervention for chronic total coronary occlusion. Am J Cardiol. 2016;117:1868–76.CrossRefGoogle Scholar
  27. 27.
    Song BG, Choi JH, Choi SM, Park JH, Park YH, Choe YH. Coronary artery graft dilatation aided by multidetector computed tomography. Asian Cardiovasc Thorac Ann. 2010;18:177–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Samsung Medical CenterSungkyunkwan University School of MedicineSeoulSouth Korea
  2. 2.Severance Cardiovascular HospitalYonsei University College of MedicineSeoulSouth Korea
  3. 3.National Health Insurance Service Ilsan HospitalGoyang-siSouth Korea

Personalised recommendations