Advertisement

Estimating Weights for the Active Ageing Index (AAI) from Stated Preferences: Proposal for a Discrete Choice Experiment (DCE)

  • Christian Ernst Heinrich Boehler
  • Timea Mariann Helter
  • Ibrahim-Kholilul Rohman
  • Fabienne Abadie
Chapter

Abstract

This chapter outlines how Discrete Choice Experiments (DCEs) could be used to estimate alternative weights for the Active Ageing Index (AAI) based on stated preferences. The approach is based on Random Utility Theory and could provide valuable information on marginal substitution rates between AAI indicators and domains. Complementing the current AAI methodology with preference-based weights may also allow assessing preference variation across different social, cultural or geographic contexts. This would help define more targeted active and healthy ageing policies and interventions, incorporate stakeholders’ views in the valuation of policy outcomes and enhance the acceptance of the Index as a tool for policy analysis.

References

  1. AAI-Expert Group. (2014). Report of the third meeting of the AAI Expert Group. Brussels, Belgium. Retrieved from http://www1.unece.org/stat/platform/download/attachments/76287849/Report%20of%20the%20Third%20meeting_Final.pdf?version=1&modificationDate=1395409157483&api=v2
  2. Amaya-Amaya, M., Gerard, K., & Ryan, M. (2008). Discrete choice experiments in a nutshell. In M. Ryan, K. Gerard, & M. Amaya-Amaya (Eds.), Using discrete choice experiments to value health and healthcare. Dordrecht: Springer.Google Scholar
  3. Boehler, C., & Abadie, F. (2015). Monitoring and Assessment Framework for the European Innovation Partnership on Active and Healthy Ageing (MAFEIP). Conceptual description of the monitoring framework. European Commission, Joint Research Centre, Seville, Spain. ISBN:978-92-79-50574-4. Retrieved from http://publications.jrc.ec.europa.eu/repository/handle/JRC96205
  4. Boehler, C., de Graaf, G., Steuten, L., Yang, Y., & Abadie, F. (2015, September). Development of a web-based tool for the assessment of health and economic outcomes of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA). BMC Medical Informatics and Decision Making, 15(Suppl. 3), S4. Retrieved from http://www.biomedcentral.com/1472-6947/15/S3/S4
  5. Bridges, J. F., Hauber, A. B., Marshall, D., Lloyd, A., Prosser, L. A., Regier, D. A., Johnson, F. R., & Mauskopf, J. (2011). Conjoint analysis applications in health-a checklist: Report of the ISPOR good research practices for conjoint analysis task force. Value in Health, 14(4), 403–413. Retrieved from http://www.ispor.org/taskforces/documents/ISPOR-CA-in-Health-TF-Report-Checklist.pdf
  6. Carson, R. T., & Groves, T. (2007). Incentive and informational properties of preference questions. Environmental and Resource Economics, 37, 181–200.CrossRefGoogle Scholar
  7. Coast, J., Al-Janabi, H., Sutton, E. J., Horrocks, S. A., Vosper, A. J., Swancutt, D. R., & Flynn, T. N. (2012). Using qualitative methods for attribute development for discrete choice experiments: Issues and recommendations. Health Economics, 21(6), 730–741.CrossRefGoogle Scholar
  8. Cogan, A., Sharpe, S., & Hertzberg, J. (1986). “Citizen Participation.” The practice of state and regional planning. Chicago.Google Scholar
  9. De Bekker-Grob, E. W., Hol, L., Donkers, B., van Dam, L., Habbema, J. D., van Leerdam, M. E., Kuipers, E. J., Essink-Bot, M. L., & Steyerberg, E. W. (2010). Labeled versus unlabeled discrete choice experiments in health economics: An application to colorectal cancer screening. Value in Health, 13(2), 315–323.CrossRefGoogle Scholar
  10. Dolan, P. (1999). Whose preferences count? Medical Decision Making, 19(4), 482–486.CrossRefGoogle Scholar
  11. European Commission. (2006). The demographic future of Europe—From challenge to opportunity. COM/2006/0571. Retrieved from http://eur-lex.europa.eu/legal-content/EN/ALL/;ELX_SESSIONID=X5cbJ7hYDFQjnJHrLT7LMD1nPSNcrVk1ZmvhnnXgkVLvX0Ln11Qw!-82020822?uri=CELEX:52006DC0571
  12. European Commission. (2011). Strategic implementation plan for the European innovation partnership on active and healthy ageing. Steering Group Working Document. Retrieved from http://ec.europa.eu/research/innovation-union/pdf/active-healthy-ageing/steering-group/implementation_plan.pdf#view=fit&pagemode=none
  13. European Commission. (2012). The 2012 Ageing Report, Economic and budgetary projections for the 27 EU Member States (2010–2060). European Economy 2/2012. Retrieved from http://ec.europa.eu/economy_finance/publications/european_economy/2012/pdf/ee-2012-2_en.pdf
  14. Eurostat. (2015). Information society statistics. Retrieved January 21, 2015, from http://ec.europa.eu/eurostat/web/information-society/data/database
  15. Helter, T. M., & Boehler, C. (2016). Developing attributes for discrete choice experiments in health—A systematic literature review and case study of alcohol misuse interventions. Journal for Substance Use, 21(6), 662–668.CrossRefGoogle Scholar
  16. Huber, J., & Zwerina, K. (1996). The importance of utility balance in efficient choice designs. Journal of Marketing Research, 33, 307–317.CrossRefGoogle Scholar
  17. Johnson, F. R., Lancsar, E., Marshall, D., Kilambi, V., Mühlbacher, A., Regier, D. A., Bresnahan, B. W., Kanninen, B., & Bridges, J. F. (2013). Constructing experimental designs for discrete-choice experiments: Report of the ISPOR conjoint analysis experimental design good research practices task force. Value in Health, 16, 3–13. Retrieved from http://www.ispor.org/ValueInHealth/ShowValueInHealth.aspx?issue=3551E3F3-83A8-4895-9415-5272AF29A9DF.CrossRefGoogle Scholar
  18. Lancaster, K. J. (1966). A new approach to consumer theory. Journal of Political Economy, 74(2), 132–157. Retrieved from http://www.dklevine.com/archive/refs41385.pdf.CrossRefGoogle Scholar
  19. Lancsar, E., & Louviere, J. (2008). Conducting discrete choice experiments to inform healthcare decision making: A user’s guide. PharmacoEconomics, 26(8), 661–677.CrossRefGoogle Scholar
  20. Louviere, J., Hensher, D. A., & Swait, J. D. (2000). Stated choice methods: Analysis and applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. Louviere, J. J., Flynn, T. N., & Carson, R. T. (2010). Discrete choice experiments are not conjoint analysis. Journal of Choice Modelling, 3(3), 57–72.CrossRefGoogle Scholar
  22. Mangham, L. J., Hanson, K., & McPake, B. (2009). How to do (or not to do)….Designing a discrete choice experiment for application in a low-income country. Health Policy and Planning, 24, 151–158.CrossRefGoogle Scholar
  23. Marshall, D., Bridges, J. F. P., Hauber, B., Cameron, R., Donnalley, L., Fyie, K., & Johnson, F. R. (2010). Conjoint analysis applications in health—How are studies being designed and reported? The Patient: Patient-Centered Outcomes Research, 3(4), 249–256.CrossRefGoogle Scholar
  24. McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Frontiers of econometrics. New York: Academic Press.Google Scholar
  25. OECD/JRC. (2005). Handbook of constructing composite indicators: Methodology and user guide. OECD Statistics Working Paper. Retrieved from http://www.oecd.org/std/42495745.pdf
  26. Ryan, M. (1999). Using conjoint analysis to take account of patient preferences and go beyond health outcomes: An application to in vitro fertilisation. Social Science and Medicine, 48(4), 535–546.CrossRefGoogle Scholar
  27. Ryan, M., & Farrar, S. (2000). Using conjoint analysis to elicit preferences for healthcare. BMJ, 320, 1530–1533.CrossRefGoogle Scholar
  28. Ryan, M., & Gerard, K. (2003). Using discrete choice experiments to value health care programmes: Current practice and future research reflections. Applied Health Economics and Health Policy, 2(1), 55–64.Google Scholar
  29. Scott, A. (2002). Identifying and analysing dominant preferences in discrete choice experiments: An application in healthcare. Journal of Economic Psychology, 23(3), 383–398.CrossRefGoogle Scholar
  30. Sharpe, A., & Andrews, B. (2012). An assessment of weighting methodologies for composite indicators: The case of the index of economic well-being. CSLS Research Report 2012–10. Retrieved from http://www.csls.ca/reports/csls2012-10.pdf
  31. Shumway, M., Saunders, T., Shern, D., Pines, E., Downs, A., Burbine, T., & Beller, J. (2003). Preferences for schizophrenia treatment outcomes among public policy makers, consumers, families, and providers. Psychiatric Services, 54(8), 1124–1128.CrossRefGoogle Scholar
  32. Street, D., Burgess, L., Viney, R., & Louviere, J. (2008). Designing discrete choice experiments for healthcare. In M. Ryan, K. Gerard, & M. Amaya-Amaya (Eds.), Using discrete choice experiments to value health and healthcare. Dordrecht: Springer.Google Scholar
  33. Train, K. (2009). Discrete choice methods with simulation (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. Ubel, P. A., Loewenstein, G., & Jepson, C. (2003). Whose quality of life? A commentary exploring discrepancies between health state evaluations of patients and the general public. Quality of Life Research, 12(6), 599–607.CrossRefGoogle Scholar
  35. Viney, R., Lancsar, E., & Louviere, J. (2002). Discrete choice experiments to measure consumer preferences for health and healthcare. Expert Review of Pharmacoeconomics Outcomes Research, 2(4), 319–326.CrossRefGoogle Scholar
  36. Watson, V., Carnon, A., Ryan, M., & Cox, D. (2012). Involving the public in priority setting: A case study using discrete choice experiments. Journal of Public Health, 34(2), 253–260. Retrieved from http://jpubhealth.oxfordjournals.org/content/34/2/253.full.pdf+html.CrossRefGoogle Scholar
  37. WHO. (2002). Active ageing: A policy framework. WHO/NMH/NPH/02.8. Retreievd from http://whqlibdoc.who.int/hq/2002/WHO_NMH_NPH_02.8.pdf?ua=1
  38. WHO. (2012). How to conduct a discrete choice experiment for health workforce recruitment and retention in remote and rural areas: A user guide with case studies. Retrieved from http://www.who.int/hrh/resources/dceguide/en/
  39. Wong, S. F., Norman, R., Dunning, T. L., Ashley, D. M., & Lorgelly, P. K. (2014). A protocol for a discrete choice experiment: Understanding preferences of patients with cancer towards their cancer care across metropolitan and rural regions in Australia. BMJ Open, 4, e006661. Retrieved from http://bmjopen.bmj.com/content/4/10/e006661.full.pdf+html
  40. Zaidi, A., Gasior, K., Hofmarcher, M. M., Lelkes, O., Marin, B., Rodrigues, R., Schmidt, A., Vanhuysse, P., & Zolyomi, E. (2013). Active Ageing Index 2012. Concept, methodology, and final results. Research Memorandum/Methodology Report. European Centre Vienna, March 2013. Retrieved from www.euro.centre.org/data/aai/1253897823_70974.pdf
  41. Zaidi, A., & Stanton, D. (2015). Active ageing index 2014: Analytical report. Report produced at the Centre for Research on ageing, University of Southampton, under contract with UNECE (Geneva), co-funded by European Commission, Brussels. Retrieved from http://www.southampton.ac.uk/assets/sharepoint/groupsite/Administration/SitePublisher-document-store/Documents/aai_report.pdf

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Christian Ernst Heinrich Boehler
    • 1
  • Timea Mariann Helter
    • 2
  • Ibrahim-Kholilul Rohman
    • 3
  • Fabienne Abadie
    • 4
  1. 1.European Centre for Social Welfare Policy and ResearchViennaAustria
  2. 2.Main Association of Austrian Social Security InstitutionsViennaAustria
  3. 3.Chalmers University of TechnologyGöteborgSweden
  4. 4.DG JRC-IPTSEuropean CommissionSevillaSpain

Personalised recommendations