Realistic Walkthrough of Cultural Heritage Sites

  • Uma Mudenagudi
  • Syed Altaf Ganihar
  • Shankar Setty
Chapter

Abstract

In this chapter, we present the framework for realistic walkthrough of cultural heritage sites. The framework includes 3D data acquisition, data processing, and interactive rendering of complex 3D models such as sculptures, monuments, and artifacts found at cultural heritage sites. We acquire both coarse level and detail level 3D data using modeling tools and scanning devices. The acquired point cloud data at cultural heritage sites exhibit nonuniform distribution of geometry and hence we propose to use intrinsic geometric properties like metric tensor and Christoffel symbols, for capturing the geometry of the acquired 3D data to facilitate data processing. We propose several geometry-based data processing techniques such as super resolution, hole filling, and object categorization, for refining the acquired 3D data. We also propose coarse to detail 3D reconstruction technique, for the reconstruction of 3D models. Finally, the coarse to detail 3D reconstructed models is rendered using a rendering engine in an attempt to restore the original appearance of cultural heritage sites. We demonstrate the proposed framework using a walkthrough generated for the Vittala Temple at Hampi.

Notes

Acknowledgements

This research work is partly supported by the Indian Digital Heritage project (NRDMS/11/2013/013/Phase-III) under the Digital Hampi initiative of the Department of Science and Technology, Government of India. We would like to thank Mr. Sujay B., Mr. Shreyas Joshi, Mr. Pawan S, Mr. Ramesh Tabib, Mr. Somashekahar D. from B.V.B. College of Engineering and Technology-Hubli, Ms. Meera Natampally from National Institute for Advanced Studies (NIAS)-Bangalore, and Dr. Prem Kalra from IIT-Delhi for being an integral part of this project. We also would like to thank PMC members and PIs of the IDH project.

References

  1. 1.
    Allen PK, Troccoli A, Smith B, Stamos I, Murray S (2003) The beauvais cathedral project. In: Conference on computer vision and pattern recognition workshop. CVPRW ’03, vol 1, pp 10–10Google Scholar
  2. 2.
    Bernardini F, Mittleman J, Rushmeier H, Silva C, Taubin G (1999) The ball-pivoting algorithm for surface reconstruction. IEEE Trans Vis Comput Graph 5(4):349–359CrossRefGoogle Scholar
  3. 3.
    Bernardini F, Rushmeier HE (2002) The 3d model acquisition pipeline. Comput Graph Forum 21(2):149–172CrossRefGoogle Scholar
  4. 4.
    Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27:1–27:27Google Scholar
  5. 5.
    Corsini M, Dellepiane M, Ponchio F, Scopigno R (2009) Image-to-geometry registration: a mutual information method exploiting illumination-related geometric properties. Comput Graph Forum 28(7):1755–1764CrossRefGoogle Scholar
  6. 6.
    Fontana R, Greco M, Materazzi M, Pampaloni E, Pezzati L, Rocchini C, Scopigno R (2002) Three-dimensional modelling of statues: the minerva of arezzo. J Cult Heritage 3(4):325–331CrossRefGoogle Scholar
  7. 7.
    Furukawa Y, Ponce J (2010) Accurate, dense, and robust multi-view stereopsis. IEEE Trans Pattern Anal Mach Intell 32(8):1362–1376Google Scholar
  8. 8.
    Ganihar SA, Joshi S, Setty S, Mudenagudi U (2014) 3d object decomposition and super resolution. In: SIGGRAPH Asia posters. ACM, pp 5:1–5:1Google Scholar
  9. 9.
    Ganihar SA, Joshi S, Setty S, Mudenagudi U (2014) 3d object super resolution using metric tensor and christoffel symbols. In: Proceedings of the 2014 Indian conference on computer vision graphics and image processing, ICVGIP ’14. ACM, pp 87:1–87:8Google Scholar
  10. 10.
    Ganihar SA, Joshi S, Setty S, Mudenagudi U (2015) Computer vision—ACCV 2014 workshops, chap. Metric tensor and Christoffel symbols based 3D object categorization. Springer, pp 138–151Google Scholar
  11. 11.
    Ganihar SA, Joshi S, Shetty S, Mudenagudi U (2014) Metric tensor and christoffel symbols based 3d object categorization. In: ACM SIGGRAPH posters, pp 38:1–38:1Google Scholar
  12. 12.
    Gomes L, Bellon ORP, Silva L (2014) 3d reconstruction methods for digital preservation of cultural heritage: a survey. Pattern Recogn Lett 50:3–14CrossRefGoogle Scholar
  13. 13.
    Grun A, Remondino F, Zhang L (2004) Photogrammetric reconstruction of the great buddha of bamiyan, afghanistan. Photogram Rec 19(107):177–199CrossRefGoogle Scholar
  14. 14.
    Ikeuchi K, Oishi T, Takamatsu J, Sagawa R, Nakazawa A, Kurazume R, Nishino K, Kamakura M, Okamoto Y (2007) The great buddha project: digitally archiving, restoring, and analyzing cultural heritage objects. Int J Comput Vis 75(1):189–208CrossRefGoogle Scholar
  15. 15.
    Izadi S, Kim D, Hilliges O, Molyneaux D, Newcombe R, Kohli P, Shotton J, Hodges S, Freeman D, Davison A, Fitzgibbon A (2011) Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th annual ACM symposium on user interface software and technology, UIST ’11. ACM, pp 559–568Google Scholar
  16. 16.
    Jost J (2011) Riemannian geometry and geometric analysis. Springer Universitat texts. Springer, BerlinCrossRefMATHGoogle Scholar
  17. 17.
    Kazhdan M, Bolitho M, Hoppe H (2006) Poisson surface reconstruction. In: Proceedings of the fourth Eurographics symposium on geometry processing, SGP ’06. Eurographics Association, pp 61–70Google Scholar
  18. 18.
    Koutsourakis P, Simon L, Teboul O, Tziritas G, Paragios N (2009) Single view reconstruction using shape grammars for urban environments. In: 2009 IEEE 12th international conference on computer vision, pp 1795–1802Google Scholar
  19. 19.
    Levoy M, Pulli K, Curless B, Rusinkiewicz S, Koller D, Pereira L, Ginzton M, Anderson S, Davis J, Ginsberg J, Shade J, Fulk D (2000) The digital michelangelo project: 3d scanning of large statues. In: Proceedings of the 27th annual conference on computer graphics and interactive techniques, SIGGRAPH ’00. ACM Press/Addison-Wesley Publishing Co, pp 131–144Google Scholar
  20. 20.
    Li R, Luo T, Zha H (2010) 3d digitization and its applications in cultural heritage. In: Proceedings of the third international conference on digital heritage, EuroMed’10. Springer, pp 381–388Google Scholar
  21. 21.
    Liepa P (2003) Filling holes in meshes. In: Proceedings of the 2003 eurographics/ACM SIGGRAPH symposium on geometry processing, SGP ’03. Eurographics Association, pp 200–205Google Scholar
  22. 22.
    Mudenagudi U, Ganihar SA, Joshi S, Setty S, Rahul G, Dhotrad S, Natampally M, Kalra P (2015) Computer vision—ACCV 2014 workshops, chap. Realistic walkthrough of cultural heritage sites-Hampi. Springer, pp 554–566Google Scholar
  23. 23.
    Rusinkiewicz S, Levoy M (2001) Efficient variants of the ICP algorithm. In: Third international conference on 3D digital imaging and modeling (3DIM)Google Scholar
  24. 24.
    Setty S, Ganihar SA, Mudenagudi U (2015) Framework for 3d object hole filling. In: IEEE NCVPRIPG, pp 1–4 (2015)Google Scholar
  25. 25.
    Snavely N, Seitz SM, Szeliski R (2006) Photo tourism: exploring photo collections in 3d. ACM Trans Graph 25(3):835–846CrossRefGoogle Scholar
  26. 26.
    Stamos I, Allen PK (2001) Automatic registration of 2-d with 3-d imagery in urban environments. In: ICCV, pp 731–737Google Scholar
  27. 27.
    Sonnemann T, Sauerbier M, Remondino F, Schrotter G (2006) Reality-based 3d modeling of the angkorian temples using aerial images. Brit Archaeol Rep Int Ser 1568:573–579Google Scholar
  28. 28.
    Vrubel A, Bellon ORP, Silva L (2009) A 3d reconstruction pipeline for digital preservation. In: IEEE conference on computer vision and pattern recognition. CVPR 2009, pp 2687–2694Google Scholar
  29. 29.
    Wasserman J (2003) Michelangelo’s florence peita. Princeton University PressGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Uma Mudenagudi
    • 1
  • Syed Altaf Ganihar
    • 1
  • Shankar Setty
    • 1
  1. 1.B.V.B. College of Engineering and TechnologyHubliIndia

Personalised recommendations