Advertisement

Scale Space-based Capillary Detection to Determine Capillary Density and Avascular in Nailfold Capillary Images Using USB Digital Microscope

  • H. S. Ajaya
  • H. R. Shreyas
  • Vikram Manikandan
  • K. V. SumaEmail author
  • Bheemsain Rao
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 77)

Abstract

Nailfold capillaroscopy (NC) is a non-invasive technique used for detecting multiple medical disorders such as connective tissue, rheumatic and systemic diseases. Current NC methods involve acquiring high-resolution images from expensive video capillaroscope for analysis. NC analysis on low-resolution images obtained from a low-cost hardware is a challenging task. Scale space capillary detectors (SCD) is proposed for detection of capillaries under such conditions, which is a unique combination of anisotropic diffusion and Harris corner detector. SCD is followed by Ordinate clustering algorithm (OCA) which is used to eliminate outliers in the detected capillaries. Nailfold capillary images are obtained from a low-cost digital microscope under varying lighting conditions to form a custom database. Experimental results show the promising performance of the proposed algorithm with a high true-positive detection rate and a low false-negative detection rate.

Keywords

Nailfold capillary Anisotropic diffusion Ordinate clustering algorithm Bi-cubic interpolation Harris corner detector 

References

  1. 1.
    Cutolo, M., Sulli, A., Secchi, M.E., Paolino, S., Pizzorni, C.: Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement? Oxf. J. Rheumatol. 45(4), iv43–iv46 (2006)CrossRefGoogle Scholar
  2. 2.
    Vasdev, V., Bhakuni, D.S., Bhayana, A., Kamboj, P.: Nailfold capillaroscopy: a cost effective practical technique using digital microscope. Indian J. Rheumatol. 6(4), 185191 (2011)CrossRefGoogle Scholar
  3. 3.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of Alvey Vision Conference, vol. 15, pp. 147–151 (1988)Google Scholar
  4. 4.
    Trajkovic, M., Hedley, M.: Fast corner detection. Image Vis. Comput. 16(2), 7587 (1998)CrossRefGoogle Scholar
  5. 5.
    Wang, H., Brady, M.: Real-time corner detection algorithm for motion estimation. Image Vis. Comput. 13(9), 695703 (1995)CrossRefGoogle Scholar
  6. 6.
    Perona, P., Malik, J.: Scale-spaceandedge detection using anisotropic diffusion. IEEE Trans. Pattern. Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  7. 7.
    Srivastava, A., Bhateja, V., Tiwari, H.: Modified anisotropic diffusion filtering algorithm for MRI. In: Proceedings of (IEEE) 2nd International Conference on Computing for Sustainable Global Development 1885–1890 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • H. S. Ajaya
    • 1
  • H. R. Shreyas
    • 2
  • Vikram Manikandan
    • 2
  • K. V. Suma
    • 3
    Email author
  • Bheemsain Rao
    • 4
  1. 1.International Institute of Information TechnologyBangaloreIndia
  2. 2.University of Southern CaliforniaLos AngelesUSA
  3. 3.Ramaiah Institute of TechnologyBangaloreIndia
  4. 4.PES UniversityBangaloreIndia

Personalised recommendations