Immunomodulation and Photocarcinogenesis

  • Neeraj Agarwal


Ultraviolet radiation exposure has many biological effects, and immunosuppression is one of the least understood. UVR-suppressed immune reactions have been known for decades, and it diverges from drug-induced immunosuppression in many ways. Repeated exposure to lower doses of UVR induces long-term immunosuppression; UVR-mediated immunosuppression is antigen-specific and primarily perturbs the T-cell-driven immune reactions. UVR-induced immunosuppression is one of the factors for photocarcinogenesis.


UV radiation Immunosuppression Skin immune system Immunotherapy 


  1. 1.
    Wong G, Gupta R, Dixon KM, Deo SS, Choong SM, Halliday GM et al (2004) 1,25-Dihydroxyvitamin D and three low-calcemic analogs decrease UV-induced DNA damage via the rapid response pathway. J Steroid Biochem Mol Biol 89–90(1–5):567–570PubMedCrossRefGoogle Scholar
  2. 2.
    Kripke ML (1974) Antigenicity of murine skin tumors induced by ultraviolet light. J Natl Cancer Inst 53(5):1333–1336PubMedCrossRefGoogle Scholar
  3. 3.
    Sontag Y, Guikers CL, Vink AA, de Gruijl FR, van Loveren H, Garssen J et al (1995) Cells with UV-specific DNA damage are present in murine lymph nodes after in vivo UV irradiation. J Invest Dermatol 104(5):734–738PubMedCrossRefGoogle Scholar
  4. 4.
    Kraemer KH, Lee MM, Scotto J (1987) Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol 123(2):241–250PubMedCrossRefGoogle Scholar
  5. 5.
    Garssen J, Goettsch W, de Gruijl F, Slob W, van Loveren H (1996) Risk assessment of UVB effects on resistance to infectious diseases. Photochem Photobiol 64(2):269–274PubMedCrossRefGoogle Scholar
  6. 6.
    Yarosh D, Klein J, O’Connor A, Hawk J, Rafal E, Wolf P (2001) Effect of topically applied T4 endonuclease V in liposomes on skin cancer in xeroderma pigmentosum: a randomised study. Xeroderma Pigmentosum Study Group. Lancet 357(9260):926–929PubMedCrossRefGoogle Scholar
  7. 7.
    De Fabo EC, Noonan FP (1983) Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology. J Exp Med 158(1):84–98PubMedCrossRefGoogle Scholar
  8. 8.
    Norval M, El-Ghorr AA (2002) Studies to determine the immunomodulating effects of cis-urocanic acid. Methods 28(1):63–70PubMedCrossRefGoogle Scholar
  9. 9.
    Kim TH, Moodycliffe AM, Yarosh DB, Norval M, Kripke ML, Ullrich SE (2003) Viability of the antigen determines whether DNA or urocanic acid act as initiator molecules for UV-induced suppression of delayed-type hypersensitivity. Photochem Photobiol 78(3):228–234PubMedCrossRefGoogle Scholar
  10. 10.
    Devary Y, Rosette C, DiDonato JA, Karin M (1993) NF-kappa B activation by ultraviolet light not dependent on a nuclear signal. Science 261(5127):1442–1445PubMedCrossRefGoogle Scholar
  11. 11.
    Simon MM, Aragane Y, Schwarz A, Luger TA, Schwarz T (1994) UVB light induces nuclear factor kappa B (NF kappa B) activity independently from chromosomal DNA damage in cell-free cytosolic extracts. J Invest Dermatol 102(4):422–427PubMedCrossRefGoogle Scholar
  12. 12.
    Rosette C, Karin M (1996) Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 274(5290):1194–1197PubMedCrossRefGoogle Scholar
  13. 13.
    Barber LA, Spandau DF, Rathman SC, Murphy RC, Johnson CA, Kelley SW et al (1998) Expression of the platelet-activating factor receptor results in enhanced ultraviolet B radiation-induced apoptosis in a human epidermal cell line. J Biol Chem 273(30):18891–18897PubMedCrossRefGoogle Scholar
  14. 14.
    Walterscheid JP, Ullrich SE, Nghiem DX (2002) Platelet-activating factor, a molecular sensor for cellular damage, activates systemic immune suppression. J Exp Med 195(2):171–179PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Toews GB, Bergstresser PR, Streilein JW (1980) Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. J Immunol 124(1):445–453PubMedGoogle Scholar
  16. 16.
    Schwarz A, Noordegraaf M, Maeda A, Torii K, Clausen BE, Schwarz T (2010) Langerhans cells are required for UVR-induced immunosuppression. J Invest Dermatol 130(5):1419–1427PubMedCrossRefGoogle Scholar
  17. 17.
    Loser K, Beissert S (2009) Regulation of cutaneous immunity by the environment: an important role for UV irradiation and vitamin D. Int Immunopharmacol 9(5):587–589PubMedCrossRefGoogle Scholar
  18. 18.
    Aubin F (2003) Mechanisms involved in ultraviolet light-induced immunosuppression. Eur J Dermatol 13(6):515–523PubMedGoogle Scholar
  19. 19.
    Stege H, Roza L, Vink AA, Grewe M, Ruzicka T, Grether-Beck S et al (2000) Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin. Proc Natl Acad Sci U S A 97(4):1790–1795PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sreevidya CS, Fukunaga A, Khaskhely NM, Masaki T, Ono R, Nishigori C et al (2010) Agents that reverse UV-induced immune suppression and photocarcinogenesis affect DNA repair. J Invest Dermatol 130(5):1428–1437PubMedCrossRefGoogle Scholar
  21. 21.
    Kripke ML, Cox PA, Alas LG, Yarosh DB (1992) Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice. Proc Natl Acad Sci U S A 89(16):7516–7520PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Schwarz T, Schwarz A (2011) Molecular mechanisms of ultraviolet radiation-induced immunosuppression. Eur J Cell Biol 90(6–7):560–564PubMedCrossRefGoogle Scholar
  23. 23.
    Gruber F, Zamolo G, Kastelan M, Massari LP, Cabrijan L, Peharda V et al (2007) Photocarcinogenesis – molecular mechanisms. Coll Antropol 31(Suppl 1):101–106PubMedGoogle Scholar
  24. 24.
    Nasti TH, Iqbal O, Tamimi IA, Geise JT, Katiyar SK, Yusuf N (2011) Differential roles of T-cell subsets in regulation of ultraviolet radiation induced cutaneous photocarcinogenesis. Photochem Photobiol 87(2):387–398PubMedCrossRefGoogle Scholar
  25. 25.
    Muller G, Saloga J, Germann T, Schuler G, Knop J, Enk AH (1995) IL-12 as mediator and adjuvant for the induction of contact sensitivity in vivo. J Immunol 155(10):4661–4668PubMedGoogle Scholar
  26. 26.
    Schmitt DA, Owen-Schaub L, Ullrich SE (1995) Effect of IL-12 on immune suppression and suppressor cell induction by ultraviolet radiation. J Immunol 154(10):5114–5120PubMedGoogle Scholar
  27. 27.
    Schwarz A, Grabbe S, Aragane Y, Sandkuhl K, Riemann H, Luger TA et al (1996) Interleukin-12 prevents ultraviolet B-induced local immunosuppression and overcomes UVB-induced tolerance. J Invest Dermatol 106(6):1187–1191PubMedCrossRefGoogle Scholar
  28. 28.
    Katta R, Brown DN (2015) Diet and skin cancer: the potential role of dietary antioxidants in nonmelanoma skin cancer prevention. J Skin Cancer 2015:893149PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266(1–2):37–56PubMedCrossRefGoogle Scholar
  30. 30.
    Bickers DR, Athar M (2006) Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 126(12):2565–2575PubMedCrossRefGoogle Scholar
  31. 31.
    Mocellin S, Pasquali S, Rossi CR, Nitti D (2010) Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 102(7):493–501PubMedCrossRefGoogle Scholar
  32. 32.
    Tsai KY (2007) Systemic adjuvant therapy for patients with high-risk melanoma. Arch Dermatol 143(6):779–782PubMedCrossRefGoogle Scholar
  33. 33.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Torres A, Storey L, Anders M, Miller RL, Bulbulian BJ, Jin J et al (2007) Immune-mediated changes in actinic keratosis following topical treatment with imiquimod 5% cream. J Transl Med 5:7PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wenzel J, Uerlich M, Haller O, Bieber T, Tueting T (2005) Enhanced type I interferon signaling and recruitment of chemokine receptor CXCR3-expressing lymphocytes into the skin following treatment with the TLR7-agonist imiquimod. J Cutan Pathol 32(4):257–262PubMedCrossRefGoogle Scholar
  36. 36.
    Wolf IH, Kodama K, Cerroni L, Kerl H (2007) Nature of inflammatory infiltrate in superficial cutaneous malignancies during topical imiquimod treatment. Am J Dermatopathol 29(3):237–241PubMedCrossRefGoogle Scholar
  37. 37.
    Huang SJ, Hijnen D, Murphy GF, Kupper TS, Calarese AW, Mollet IG et al (2009) Imiquimod enhances IFN-gamma production and effector function of T cells infiltrating human squamous cell carcinomas of the skin. J Invest Dermatol 129(11):2676–2685PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    De Giorgi V, Salvini C, Chiarugi A, Paglierani M, Maio V, Nicoletti P et al (2009) In vivo characterization of the inflammatory infiltrate and apoptotic status in imiquimod-treated basal cell carcinoma. Int J Dermatol 48(3):312–321PubMedCrossRefGoogle Scholar
  39. 39.
    Wagstaff AJ, Perry CM (2007) Topical imiquimod: a review of its use in the management of anogenital warts, actinic keratoses, basal cell carcinoma and other skin lesions. Drugs 67(15):2187–2210PubMedCrossRefGoogle Scholar
  40. 40.
    (2009) Imiquimod for superficial and in situ skin malignancy. Drug Ther Bull 47(10):113–6Google Scholar
  41. 41.
    Clark RA, Huang SJ, Murphy GF, Mollet IG, Hijnen D, Muthukuru M et al (2008) Human squamous cell carcinomas evade the immune response by down-regulation of vascular E-selectin and recruitment of regulatory T cells. J Exp Med 205(10):2221–2234PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Neeraj Agarwal
    • 1
  1. 1.Urology Division, Department of Surgery, Anschutz Medical CampusUniversity of Colorado DenverAuroraUSA

Personalised recommendations