Molecular and Genetic Response of Human Skin Under Ultraviolet Radiation

  • Neera Yadav
  • Monisha BanerjeeEmail author


Ultraviolet (UV) radiation is recognized as an essential risk factor due to its dual role of affecting the human skin. Primarily, it is required for natural vitamin D synthesis in the skin which is indispensable for human health in many constructive ways. On the other hand, UV radiation acts as a non-specific damaging agent and a mutagen as well. UV radiation has potential to cause both cancer initiation and progression. Excessive and repeated exposure to UV is associated with health risks, including pigment changes, wrinkle formation, atrophy, and malignancy. Epidemiologically and molecularly UV is linked to DNA damage, either directly or indirectly via oxidative injury resulting in various types of skin cancer. Genetic factors also stimulate threat of UV-mediated skin anomalies. This chapter emphasizes on genetic and molecular mechanisms of pigmentation, tanning, DNA damage and repair, Melanocortin 1 receptor (MC1R) gene expression, photoproduct formation, and p53 mutation.


UV radiation Pigmentation MC1R DNA damage Photoproduct 


  1. 1.
    Ito S, Wakamatsu K, Ozeki H (2000) Chemical analysis of melanins and its application to the study of the regulation of melanogenesis. Pigment Cell Melanoma Res 13(s8):103–109CrossRefGoogle Scholar
  2. 2.
    Jablonski NG, Chaplin G (2010) Human skin pigmentation as an adaptation to UV radiation. Proc Natl Acad Sci 107(Supplement 2):8962–8968CrossRefGoogle Scholar
  3. 3.
    D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T (2013) UV radiation and the skin. Int J Mol Sci 14(6):12222–12248CrossRefGoogle Scholar
  4. 4.
    Narayanan DL, Saladi RN, Fox JL (2010) Ultraviolet radiation and skin cancer. Int J Dermatol 49(9):978–986CrossRefGoogle Scholar
  5. 5.
    Tatalovich Z, Wilson JP, Mack T, Yan Y, Cockburn M (2006) The objective assessment of lifetime cumulative ultraviolet exposure for determining melanoma risk. J Photochem Photobiol B Biol 85(3):198–204CrossRefGoogle Scholar
  6. 6.
    Kohen E, Santus R, Hirschberg JG (1995) Photobiology. Elsevier, p 16Google Scholar
  7. 7.
    Norval M (2006) The mechanisms and consequences of ultraviolet-induced immunosuppression. Prog Biophys Mol Biol 92(1):108–118CrossRefGoogle Scholar
  8. 8.
    Yamaguchi Y, Takahashi K, Zmudzka BZ, Kornhauser A, Miller SA, Tadokoro T, Berens W, Beer JZ, Hearing VJ (2006) Human skin responses to UV radiation: pigment in the upper epidermis protects against DNA damage in the lower epidermis and facilitates apoptosis. FASEB J 20(9):1486–1488CrossRefGoogle Scholar
  9. 9.
    Skobowiat C, Dowdy JC, Sayre RM, Tuckey RC, Slominski A (2011) Cutaneous hypothalamic-pituitary-adrenal axis homolog: regulation by ultraviolet radiation. Am J Physiol-Endocrinol Metab 301(3):E484–E493CrossRefGoogle Scholar
  10. 10.
    Skobowiat C, Sayre RM, Dowdy JC, Slominski AT (2013) Ultraviolet radiation regulates cortisol activity in a waveband-dependent manner in human skin ex vivo. Br J Dermatol 168(3):595–601CrossRefGoogle Scholar
  11. 11.
    Norman AW (2008) From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr 88(2):491S–499SCrossRefGoogle Scholar
  12. 12.
    Chaplin G, Jablonski NG (2009) Vitamin D and the evolution of human depigmentation. Am J Phys Anthropol 139(4):451–461CrossRefGoogle Scholar
  13. 13.
    Khazai N, Judd SE, Tangpricha V (2008) Calcium and vitamin D: skeletal and extraskeletal health. Curr Rheumatol Rep 10(2):110–117CrossRefGoogle Scholar
  14. 14.
    Kawada A (2000) Risk and preventive factors for skin phototype. J Dermatol Sci 23:S27–S29CrossRefGoogle Scholar
  15. 15.
    Miller SA, Coelho SG, Zmudzka BZ, Bushar HF, Yamaguchi Y, Hearing VJ, Beer JZ (2008) Dynamics of pigmentation induction by repeated ultraviolet exposures: dose, dose interval and ultraviolet spectrum dependence. Br J Dermatol 159(4):921–930CrossRefGoogle Scholar
  16. 16.
    Schlenz K, Smuda C, Batzer J, Stä F, Wenck H, Elsaesser HP, Wolber R (2005) Pigmentation mechanisms induced by different wavelength of Uv light. Pigment Cell Res 18:33Google Scholar
  17. 17.
    Choi W, Miyamura Y, Wolber R, Smuda C, Reinhold W, Liu H, Kolbe L, Hearing VJ (2010) Regulation of human skin pigmentation in situ by repetitive UV exposure: molecular characterization of responses to UVA and/or UVB. J Investig Dermatol 130(6):1685–1696CrossRefGoogle Scholar
  18. 18.
    Schulz I, Mahler HC, Boiteux S, Epe B (2000) Oxidative DNA base damage induced by singlet oxygen and photosensitization: recognition by repair endonucleases and mutagenicity. Mutat Res/DNA Repair 461(2):145–156CrossRefGoogle Scholar
  19. 19.
    Kunisada M, Sakumi K, Tominaga Y, Budiyanto A, Ueda M, Ichihashi M, Nakabeppu Y, Nishigori C (2005) 8-Oxoguanine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis. Cancer Res 65(14):6006–6010CrossRefGoogle Scholar
  20. 20.
    Meredith P, Sarna T (2006) The physical and chemical properties of eumelanin. Pigment Cell Melanoma Res 19(6):572–594CrossRefGoogle Scholar
  21. 21.
    Song X, Mosby N, Yang J, Xu A, Abdel-Malek Z, Kadekaro AL (2009) α-MSH activates immediate defense responses to UV-induced oxidative stress in human melanocytes. Pigment Cell Melanoma Res 22(6):809–818CrossRefGoogle Scholar
  22. 22.
    Kadekaro AL, Chen J, Yang J, Chen S, Jameson J, Swope VB, Cheng T, Kadakia M, Abdel-Malek Z (2012) Alpha-melanocyte–stimulating hormone suppresses oxidative stress through a p53-mediated signaling pathway in human melanocytes. Mol Cancer Res 10(6):778–786CrossRefGoogle Scholar
  23. 23.
    Bickers DR, Athar M (2006) Oxidative stress in the pathogenesis of skin disease. J Investig Dermatol 126(12):2565–2575CrossRefGoogle Scholar
  24. 24.
    Agar NS, Halliday GM, Barnetson RS, Ananthaswamy HN, Wheeler M, Jones AM (2004) The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. Proc Natl Acad Sci U S A 101(14):4954–4959CrossRefGoogle Scholar
  25. 25.
    Nouspikel TD (2009) DNA repair in mammalian cells. Cell Mol Life Sci 66(6):994–1009CrossRefGoogle Scholar
  26. 26.
    Kane AB, Kumar V (1999) Environmental and nutritional pathology. Robbins pathologic basis of disease, pp 403–457Google Scholar
  27. 27.
    Daya-Grosjean L (2008) Xeroderma pigmentosum and skin cancer. In Molecular mechanisms of xeroderma pigmentosum, Springer, New York, pp 19–27Google Scholar
  28. 28.
    Leibeling D, Laspe P, Emmert S (2006) Nucleotide excision repair and cancer. J Mol Histol 37(5–7):225–238CrossRefGoogle Scholar
  29. 29.
    DiGiovanna JJ, Kraemer KH (2012) Shining a light on xeroderma pigmentosum. J Investig Dermatol 132(3):785–796CrossRefGoogle Scholar
  30. 30.
    Ratner D, Peacocke M, Zhang H, Tsou HC (2001) UV-specific p53 and PTCH mutations in sporadic basal cell carcinoma of sun-exposed skin. J Am Acad Dermatol 44(2):293–297CrossRefGoogle Scholar
  31. 31.
    Benjamin CL, Ananthaswamy HN (2007) p53 and the pathogenesis of skin cancer. Toxicol Appl Pharmacol 224(3):241–248CrossRefGoogle Scholar
  32. 32.
    Hussein MR, Haemel AK, Wood GS (2003) p53-related pathways and the molecular pathogenesis of melanoma. Eur J Cancer Prev 12(2):93–100CrossRefGoogle Scholar
  33. 33.
    Hussain SP, Harris CC (2006) p53 biological network: at the crossroads of the cellular-stress response pathway and molecular carcinogenesis. J Nippon Med Sch 73(2):54–64CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Molecular and Human Genetics Laboratory, Department of ZoologyUniversity of LucknowLucknowIndia

Personalised recommendations