Advertisement

Role of Photodynamic Therapy in Cancer Treatment

  • Shikha Agnihotry
  • Mohammad Anas
  • Ajeet K. Srivastav
  • Deepti Chopra
  • Jaya Upadhayay
  • Syed Faiz Mujtaba
Chapter

Abstract

Cancer is one of the most fatal diseases next only to cardiovascular diseases spread all around the globe, and it is the third most fatal disease in India. Environmental factors such as chemicals, UV light, tobacco products, X-rays, viruses, and disturbance in oncogenes are the factors which induce mutations that are inheritable and result in cancer. PDT comprises of three essential components: photosensitizer (PS), light, and oxygen. Oxygen in the form of reactive oxygen species can be toxic and may lead to cell death via necrosis or apoptosis. PDT is a two-stage procedure. Administration of a light-sensitive PS is followed by irradiation of tumor loci with a light of appropriate wavelength. This chapter describes about oncogenes and role of photodynamic therapy in treatment of oncogenes.

Keywords

Photodynamic therapy Oncogenes Photosensitizer Cancer and light 

References

  1. 1.
    Stern RS (2010) Prevalence of a history of skin cancer in 2007: results of an incidence-based model. Arch Dermatol 146(3):279–282CrossRefGoogle Scholar
  2. 2.
    Calzavara-Pinton PG, Venturini M, Sala R (2007) Photodynamic therapy: update 2006. Part 1: photochemistry and photobiology. J Eur Acad Dermatol Venereol 21:293–302CrossRefGoogle Scholar
  3. 3.
    Dougherty TJ, Gomer CJ, Henderson BW et al (1998) Photodynamic therapy. J Natl Cancer Inst 90(12):889–905CrossRefGoogle Scholar
  4. 4.
    Allison RR, Mang TS, Wilson BD (1998) Photodynamic therapy for the treatment of nonmelanomatous cutaneous malignancies. Semin Cutan Med Surg 17(2):153–163CrossRefGoogle Scholar
  5. 5.
    Bernstein ZP, Wilson BD, Oseroff AR et al (1999) Photofrin photodynamic therapy for treatment of AIDS-related cutaneous Kaposi’s sarcoma. AIDS 13(13):1697–1704CrossRefGoogle Scholar
  6. 6.
    Allison R, Mang T, Hewson G et al (2001) Photodynamic therapy for chest wall progression from breast carcinoma is an underutilized treatment modality. Cancer 91(1):1–8CrossRefGoogle Scholar
  7. 7.
    Nielsen TO, Friis-Hansen L, Poulsen SS, Federspiel B, Sorensen BS (2014) Expression of the EGF family in gastric cancer: downregulation of HER4 and its activating ligand NRG4. PLoS One 9(4):e94606CrossRefGoogle Scholar
  8. 8.
    Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Science 277:242–245CrossRefGoogle Scholar
  9. 9.
    Broek D et al (1987) The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48:789–799CrossRefGoogle Scholar
  10. 10.
    Land H, Parada LF, Weinberg RA (1983) Cellular oncogenes and multi-step carcinogenesis. Science 222:771–778CrossRefGoogle Scholar
  11. 11.
    Parsons SJ, Parsons JT (2004) Src family kinases, key regulators of signal transduction. Oncogene 23:7906–7909.  https://doi.org/10.1038/sj.onc.120816 CrossRefPubMedGoogle Scholar
  12. 12.
    Cheng LC, Tavazoie M, Doetsch F (2005) Stem cells: from epigenetics to microRNAs. Neuron 46:363–367CrossRefGoogle Scholar
  13. 13.
    O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843CrossRefGoogle Scholar
  14. 14.
    Borrello MG, Degl’innocenti D, Pierotti MA (2008) Inflammation and cancer: the oncogene-driven connection. Cancer Lett 267(2):262–270 [PubMed: 18502035]CrossRefGoogle Scholar
  15. 15.
    Deindl S, Hwang WL, Hota SK, Blosser TR, Prasad P, Bartholomew B, Zhuang X (2013) ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps. Cell 152:442–452CrossRefGoogle Scholar
  16. 16.
    Keyes WM, Pecoraro M, Aranda V, Lindahl EV, Li W, Vogel H, Guo X, Garcia EL, Michurina VT, Enikolopov G, Muthuswamy KS, Mills AA (2011) Np63a is an oncogene that targets chromatin remodeler Lsh to drive skin stem cell proliferation and tumorigenesis. Cell Stem Cell 8:164–176CrossRefGoogle Scholar
  17. 17.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080CrossRefGoogle Scholar
  18. 18.
    Davies H et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954CrossRefGoogle Scholar
  19. 19.
    Rushdi A, Nishikura K, Erikson J, Watt R, Rovera G, Croce CM (1983) Differential expression of the translocated and the untranslocated c-myc oncogene in Burkitt lymphoma. Science 222:390–393CrossRefGoogle Scholar
  20. 20.
    Lusser A, Kadonaga JT (2003) Chromatin remodeling by ATP dependent molecular machines. Bioessays 25:1192–1200CrossRefGoogle Scholar
  21. 21.
    Dueñas CV, Camarero IR, Cobaleda C, García IS (2013) Function of oncogenes in cancer development: a changing paradigm.  https://doi.org/10.1038/emboj.2013.97
  22. 22.
    Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet derived growth factor. Physiol Rev 79:1283–1316CrossRefGoogle Scholar
  23. 23.
    Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400CrossRefGoogle Scholar
  24. 24.
    Croce CM (2008) Oncogenes and cancer. N Engl J Med 358:502–511CrossRefGoogle Scholar
  25. 25.
    Bizouarn F (2014) Clinical applications using digital PCR. Methods Mol Biol 1160:189–214.  https://doi.org/10.1007/978-1-4939-0733-5_16 CrossRefPubMedGoogle Scholar
  26. 26.
    Takamizawa J, Konish H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756CrossRefGoogle Scholar
  27. 27.
    Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6(5):447–458 [PubMed: 15542429]CrossRefGoogle Scholar
  28. 28.
    Oskarsson T, Trumpp A (2005) The Myc trilogy: lord of RNA polymerases. Nat Cell Biol 7:215–217CrossRefGoogle Scholar
  29. 29.
    Grosjean P, Wagnieres G, Fontolliet C (1998) Clinical photodynamic therapy for superficial cancer in the oesophagus and the bronchi: 514 nm compared with 630 nm light irradiation after sensitization with photofrin II. Br J Cancer 77(11):1989–1995CrossRefGoogle Scholar
  30. 30.
    Varmus H (1988) Retroviruses. Science 240:1427–1435CrossRefGoogle Scholar
  31. 31.
    Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15:172–183 (36, 63, 142)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shikha Agnihotry
    • 1
  • Mohammad Anas
    • 2
  • Ajeet K. Srivastav
    • 2
    • 3
  • Deepti Chopra
    • 2
    • 3
  • Jaya Upadhayay
    • 1
  • Syed Faiz Mujtaba
    • 4
  1. 1.Department of Biomedical-InformaticsSanjay Gandhi Post Graduate InstituteLucknowIndia
  2. 2.Photobiology DivisionCSIR-Indian Institute of Toxicology ResearchLucknowIndia
  3. 3.Babu Banarasi Das UniversityLucknowIndia
  4. 4.Department of Zoology, Faculty of ScienceShia P.G. College, University of LucknowLucknowIndia

Personalised recommendations