Advertisement

Role of Nanotechnology in Skin Remedies

  • Lipika Ray
  • K. C. Gupta
Chapter

Abstract

Cosmeceutical-based industries are the fast-growing field, and nanotechnology played an important role in cosmeceutical growth. Nanotechnology-based cosmeceuticals have more advantages over traditional products. Nanotechnology offers different varieties of products with enhanced bioavailability of active component which increase visual look of cosmeceutical products for a longer period of time. Its application covers a wide range of cosmeceutical products ranging from photoaging, hyperpigmentation, wrinkles, hair, etc. However, augmented demands of nanotechnology in cosmetic industry have prominent apprehension regarding the plausible diffusion of nanoparticles in the dipper skin, thus possible side effects to the human skin. Herein, a brief overview of the various novel nanocarriers for cosmeceuticals like liposomes, nanoemulsions, dendrimers, solid lipid nanoparticles (SLNs), inorganic nanoparticles, nanocrystals, etc., nanoparticle-based cosmeceutical products existing in the marketplace, possible health hazards caused by nanoparticles on exposure of nano-based cosmetics, and the recent regulatory rules applied to avoid the nanotoxicity are described.

Keywords

Nanotechnology Cosmeceuticals Nanocarrier Skin care 

Notes

Acknowledgment

LR gratefully acknowledges the financial support provided by Young Scientist Grant (SB/FT/CS-034/2013) (GAP-0206), Department of Science and Technology (DST-SERB), New Delhi, India, and CSIR-CDRI, Lucknow, for providing facility and support.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. 1.
    U.S. Food and Drug Administration. Is it a cosmetic, a drug, or both? (Or is it soap?). Available from: http://www.fda.gov/cosmetics/guidancecomplianceregulatoryinformation/ucm074201.htm. Last accessed on 1 Aug 2015
  2. 2.
    Fulekar MH (2010) Nanotechnology: importance and application. IK International Publishing House, IndiaGoogle Scholar
  3. 3.
    Mukta S, Adam F (2010) Cosmeceuticals in day-to-day clinical practice. J Drugs Dermatol 9:62–66Google Scholar
  4. 4.
    Brandt FS, Cazzaniga A, Hann M (2011) Cosmeceuticals: current trends and market analysis. Semin Cutan Med Surg 30:141–143PubMedCrossRefGoogle Scholar
  5. 5.
    Duarah S, Pujari K, Devidurai R, Narayanan VH (2016) Nanotechnology-based cosmeceuticals: a review. Int J App Pharm 8:8–12Google Scholar
  6. 6.
    Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. ISRN Dermatol 2014:1–14CrossRefGoogle Scholar
  7. 7.
    Singh R, Tiwari S, Tawaniya J (2013) Review on nanotechnology with several aspects. Int J Res Comp Eng Electron 2:1–8Google Scholar
  8. 8.
    Mu L, Sprando RL (2010) Application of nanotechnology in cosmetics. Pharm Res 27:1746–1749PubMedCrossRefGoogle Scholar
  9. 9.
    Padamwar MN, Pokharkar VB (2006) Development of vitamin loaded topical liposomal formulation using factorial design approach: drug deposition and stability. Int J Pharm 320:37–44PubMedCrossRefGoogle Scholar
  10. 10.
    BBC Research (2007) Nanostructured materials for the biomedical. Pharmaceutical, and cosmetic marketsGoogle Scholar
  11. 11.
    Papakostas D, Rancan F, Sterry W, Blume-Peytavi U, Vogt A (2011) Nanoparticles in dermatology. Arch Dermatol Res 303:533–550PubMedCrossRefGoogle Scholar
  12. 12.
    Patidar A, Thakur DS, Kumar P, Verma J (2010) A review on novel lipid-based nanocarriers. Int J Pharm Pharm Sci 2:30–35Google Scholar
  13. 13.
    Bernardi DS, Pereira TA, Maciel NR et al (2011) Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. J Nanobiotechnol 9:44CrossRefGoogle Scholar
  14. 14.
    Nemitz MC, Moraes RC, Koester LS, Bassani VL, Von Poser GL, Teixeira HF (2015) Bioactive soy isoflavones: extraction and purification procedures, potential dermal use and nanotechnology-based delivery systems. Phytochem Rev 14:849–869CrossRefGoogle Scholar
  15. 15.
    Schwarz JC, Baisaeng N, Hoppel M, Löw M, Keck CM, Valenta C (2013) Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int J Pharm 447:213–217PubMedCrossRefGoogle Scholar
  16. 16.
    Patravale VB, Mandawgade SD (2008) Novel cosmetic delivery systems: an application update. Int J Cosmet Sci 30:19–33PubMedCrossRefGoogle Scholar
  17. 17.
    Calligaris S, Comuzzo P, Bot F et al (2015) Nanoemulsions as delivery systems of hydrophobic silybin from silymarin extract: effect of oil type on silybin solubility, in vitro bioaccessibility and stability. LWT Food Sci Technol 63:77–84CrossRefGoogle Scholar
  18. 18.
    Cerqueira-Coutinho C, Santos-Oliveira R, dos Santos E, Mansur CR (2015) Development of a photoprotective and antioxidant nanoemulsion containing chitosan as an agent for improving skin retention. Eng Life Sci 15:593–604CrossRefGoogle Scholar
  19. 19.
    Goncalves VSS, Rodriguez-Rojo S, De Paz E, Mato C, Martin A, Cocero MJ (2015) Production of water soluble quercetin formulations by pressurized ethyl acetate-in-water emulsion technique using natural origin surfactants. Food Hydrocoll 51:295–304CrossRefGoogle Scholar
  20. 20.
    Ha TVA, Kim S, Choi Y et al (2015) Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract. Food Chem 178:115–121PubMedCrossRefGoogle Scholar
  21. 21.
    Hategekimana J, Chamba MVM, Shoemaker CF, Majeed H, Zhong F (2015) Vitamin E nanoemulsions by emulsion phase inversion: effect of environmental stress and long-term storage on stability and degradation in different carrier oil types. Colloid Surf A 483:70–80CrossRefGoogle Scholar
  22. 22.
    Hategekirnana J, Masamba KG, Ma JG, Zhong F (2015) Encapsulation of vitamin E: effect of physicochemical properties of wall material on retention and stability. Carbohydr Polym 124:172–179CrossRefGoogle Scholar
  23. 23.
    Lu LY, Liu Y, Zhang ZF, Gou XJ, Jiang JH, Zhang JZ, Yao Q (2015) Pomegranate seed oil exerts synergistic effects with trans-resveratrol in a self-nanoemulsifying drug delivery system. Biol Pharm Bull 38:1658–1662PubMedCrossRefGoogle Scholar
  24. 24.
    Sigward E, Corvis Y, Doan BT, Kindsiko K, Seguin J, Scherman D, Brossard D, Mignet N, Espeau P, Crauste-Manciet S (2015) Preparation and evaluation of multiple nanoemulsions containing gadolinium (III) chelate as a potential magnetic resonance imaging (MRI) contrast agent. Pharm Res 32:2983–2994PubMedCrossRefGoogle Scholar
  25. 25.
    Walker RM, Decker EA, McClements DJ (2015) Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: effect of surfactant concentration and particle size. J Food Eng 164:10–20CrossRefGoogle Scholar
  26. 26.
    Zhang J, Bing L, Reineccius GA (2015) Formation, optical property and stability of orange oil nanoemulsions stabilized by Quallija saponins. LWT Food Sci Technol 64:1063–1070CrossRefGoogle Scholar
  27. 27.
    McClements DJ (2012) Advances in fabrication of emulsions with enhanced functionality using structural design principles. Curr Opin Colloid Interf Sci 17:235–245CrossRefGoogle Scholar
  28. 28.
    Schwarz JC, Klang V, Karall S, Mahrhauser D, Resch GP, Valenta C (2012) Optimisation of multiple W/O/W nanoemulsions for dermal delivery of aciclovir. Int J Pharm 435:69–75PubMedCrossRefGoogle Scholar
  29. 29.
    Bidone J, Argenta DF, Kratz J, Pettenuzzo LF, Horn AP, Koester LS, Bassani VL, Simões CM, Teixeira HF (2015) Antiherpes activity and skin/mucosa distribution of flavonoids from achyrocline satureioides extract incorporated into topical nanoemulsions. Biomed Res Int 2015:238010PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Fasolo D, Bassani VL, Teixeira HF (2009) Development of topical nanoemulsions containing quercetin and 3-O-methylquercetin. Pharmazie 64:726–730PubMedGoogle Scholar
  31. 31.
    Fasolo D, Schwingel L, Holzschuh M, Bassani V, Teixeira H (2007) Validation of an isocratic LC method for determination of quercetin and methylquercetin in topical nanoemulsions. J Pharm Biomed Anal 44:1174–1177PubMedCrossRefGoogle Scholar
  32. 32.
    Zorzi GK, Caregnato F, Moreira JC, Teixeira HF, Carvalho EL (2016) Antioxidant effect of nanoemulsions containing extract of achyrocline satureioides (Lam) D.C.-Asteraceae. AAPS PharmSciTech 17:844PubMedCrossRefGoogle Scholar
  33. 33.
    Brownlow B, Nagaraj VJ, Nayel A, Joshi M, Elbayoumi T (2015) Development and in vitro evaluation of vitamin E-enriched nanoemulsion vehicles loaded with genistein for chemoprevention against UVB-induced skin damage. J Pharm Sci 104:3510–3523PubMedCrossRefGoogle Scholar
  34. 34.
    Clares B, Calpena AC, Parra A, Abrego G, Alvarado H, Fangueiro JF, Souto EB (2014) Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: effect on skin permeation. Int J Pharm 473:591–598PubMedCrossRefGoogle Scholar
  35. 35.
    Kohl E, Steinbauer J, Landthaler M, Szeimies RM (2011) Skin ageing. J Eur Acad Dermatol Venereol 25:873–884PubMedCrossRefGoogle Scholar
  36. 36.
    Kaur IP, Agrawal R (2007) Nanotechnology: a new paradigm in cosmeceuticals. Recent Pat Drug Deliv Formul 1:171–182PubMedCrossRefGoogle Scholar
  37. 37.
    Aparajita V (2014) Liposomes as carriers in skin ageing. Int J Curr Pharm Res 6:1–7Google Scholar
  38. 38.
    Lasic DD (1998) Novel applications of liposomes. Trends Biotechnol 16:307–321PubMedCrossRefGoogle Scholar
  39. 39.
    Chen Y, Wu Q, Zhang Z, Yuan L, Liu X, Zhou L (2012) Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules 17:5972–5987PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kazi KM (2010) Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res 1:374–380PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bei D, Meng J, Youan BBC (2010) Engineering nanomedicines for improved melanoma therapy: progress and promises. Nanomedicine 5:1385–1399PubMedCrossRefGoogle Scholar
  42. 42.
    Anisha S, Kumar SP, Kumar GV, Garima G (2010) Approaches used for penetration enhancement in transdermal drug delivery system. Int J Pharm Sci 2:708–716Google Scholar
  43. 43.
    Sankhyan A, Pawar P Recent trends in niosome as vesicular drug delivery system. J Appl Pharm Sci 2:20–32Google Scholar
  44. 44.
    Tavano L, Muzzalupo R, Picci N, de Cindio B (2014) Co-encapsulation of lipophilic antioxidants into niosomal carriers: percutaneous permeation studies for cosmeceutical applications. Colloids Surf B: Biointerfaces 114:144–149PubMedCrossRefGoogle Scholar
  45. 45.
    L’Oréal (1989) Cosmetic and pharmaceutical compositions containing niosomes and a water-soluble polyamide, and a process for preparing these compositionsGoogle Scholar
  46. 46.
    Friedrich RB, Kann B, Coradini K, Offerhaus HL, Beck RC, Windbergs M (2015a) Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin. Eur J Pharm Sci 78:204–213PubMedCrossRefGoogle Scholar
  47. 47.
    Calderilla-Fajardo SB, Cázares-Delgadillo J, Villalobos-Garcia R, Quintanar-Guerrero D, Ganem-Quintanar A, Robles R (2006) Influence of sucrose esters on the in vivo percutaneous penetration of octyl methoxycinnamate formulated in nanocapsules, nanoemulsion, and emulsion. Drug Dev Ind Pharm 32:107–113PubMedCrossRefGoogle Scholar
  48. 48.
    Olvera-Martínez BI, Cázares-Delgadillo J, Calderilla-Fajardo SB, Villalobos-Garcia R, Ganem-Quintanar A, Quintanar-Guerrero D (2005) Preparation of polymeric nanocapsules containing octyl methoxycinnamate by the emulsification-diffusion technique: penetration across the stratum corneum. J Pharm Sci 94:1552–1559PubMedCrossRefGoogle Scholar
  49. 49.
    Weiss-Angeli V, Poletto FS, de Marco SL, Salvador M, da Silveira NP, Guterres SS, Pohlmann AR (2012) Sustained antioxidant activity of quercetin-loaded lipid-core nanocapsules. J Nanosci Nanotechnol 12:2874–2880PubMedCrossRefGoogle Scholar
  50. 50.
    Kothamasu P, Kanumur H, Ravur N, Maddu C, Parasuramrajam R, Thangavel S (2012) Nanocapsules: the weapons for novel drug delivery systems. Bioimpacts 2:71–81PubMedPubMedCentralGoogle Scholar
  51. 51.
    Poletto FS, Beck RCR, Guterres SS, Pohlmann AR (2011) Polymeric nanocapsule: concepts and applications. In: Beck R, Guterres S, Pohlmann A (eds) Nanocosmetics and nanomedicines: new approaches for skin care. Springer, Berlin, pp 47–51Google Scholar
  52. 52.
    Guterres SS, Alves MP, Pohlmann AR (2007) Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2:147–157PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Detoni CB, Souto GD, da Silva AL, Pohlmann AR, Guterres SS (2012) Photostability and skin penetration of different E-resveratrol-loaded supramolecular structures. Photochem Photobiol 88:913–921PubMedCrossRefGoogle Scholar
  54. 54.
    Contri RV, Katzer T, Ourique AF, da Silva AL, Beck RC, Pohlmann AR, Guterres SS (2014a) Combined effect of polymeric nanocapsules and chitosan hydrogel on the increase of capsaicinoids adhesion to the skin surface. J Biomed Nanotechnol 10:820–830PubMedCrossRefGoogle Scholar
  55. 55.
    Contri RV, Kaiser M, Poletto FS, Pohlmann AR, Guterres SS (2011) Simultaneous control of capsaicinoids release from polymeric nanocapsules. J Nanosci Nanotechnol 11:2398–2406PubMedCrossRefGoogle Scholar
  56. 56.
    Contri RV, Soares RM, Pohlmann AR, Guterres SS (2014b) Structural analysis of chitosan hydrogels containing polymeric nanocapsules. Mater Sci Eng C Mater Biol Appl 42:234–242PubMedCrossRefGoogle Scholar
  57. 57.
    Puri D, Bhandari A, Sharma P, Choudhary D (2010) Lipid nanoparticles (SLN, NLC): a novel approach for cosmetic and dermal pharmaceutical. J Global Pharma Technol 2:1–15Google Scholar
  58. 58.
    Ekambaram P, Sathali AAH, Priyanka H (2012) Solid lipid nanoparticles: a review. Sci Rev Chem Commun 2:80–102Google Scholar
  59. 59.
    Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366:170–184PubMedCrossRefGoogle Scholar
  60. 60.
    Mei Z, Wu Q, Hu S, Li X, Yang X (2005) Triptolide loaded solid lipid nanoparticle hydrogel for topical application. Drug Dev Ind Pharm 31:161–168PubMedCrossRefGoogle Scholar
  61. 61.
    Jenning V, Gysler A, Schafer-Korting M, Gohla SH (2000a) Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm 49:211–218PubMedCrossRefGoogle Scholar
  62. 62.
    Jenning V, Schäfer-Korting M, Gohla S (2000b) Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release 66:115–126PubMedCrossRefGoogle Scholar
  63. 63.
    Souto EB, Muller RH (2008) Cosmetic features and applications of lipid nanoparticles (SLN, NLC). Int J Cosmet Sci 30:157–165PubMedCrossRefGoogle Scholar
  64. 64.
    Wissing SA, Mader K, Müller RH (2000) Solid lipid nanoparticles (SLN) as a novel carrier system offering prolonged release of the perfume Allure (Chanel). In: Proceedings of the international symposium on controlled release of bioactive materials, vol 27, pp 311–312Google Scholar
  65. 65.
    Scalia S, Franceschinis E, Bertelli D, Iannuccelli V (2013) Comparative evaluation of the effect of permeation enhancers, lipid nanoparticles and colloidal silica on in vivo human skin penetration of quercetin. Skin Pharmacol Physiol 26:57–67PubMedCrossRefGoogle Scholar
  66. 66.
    Scalia S, Mezzena M (2010) Photostabilization effect of quercetin on the UV filter combination, butyl methoxydibenzoylmethane-octyl methoxycinnamate. Photochem Photobiol 86:273–278PubMedCrossRefGoogle Scholar
  67. 67.
    Puglia C, Offerta A, Tirendi GG, Tarico MS, Curreri S, Bonina F, Perrotta RE (2016) Design of solid lipid nanoparticles for caffeine topical administration. Drug Deliv 23:36–40PubMedCrossRefGoogle Scholar
  68. 68.
    Mitri K, Shegokar R, Gohla S, Anselmi C, Müller RH (2011) Lipid nanocarriers for dermal delivery of lutein: preparation, characterization, stability and performance. Int J Pharm 414:267–275PubMedCrossRefGoogle Scholar
  69. 69.
    Caddeo C, Teskac K, Sinico C, Kristl J (2008) Effect of resveratrol incorporated in liposomes on proliferation and UV-B protection of cells. Int J Pharm 363:183–191PubMedCrossRefGoogle Scholar
  70. 70.
    Teskac K, Kristl J (2010) The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int J Pharm 390:61–69PubMedCrossRefGoogle Scholar
  71. 71.
    Müller RH, Petersen RD, Hommoss A, Pardeike J (2007) Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 59:522–530PubMedCrossRefGoogle Scholar
  72. 72.
    Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur J Pharm Biopharm 62:3–16PubMedCrossRefGoogle Scholar
  73. 73.
    Petersen R (2008) Nanocrystals for use in topical cosmetic formulations and method of production thereof. Abbott GmbH & Co., US Patent 60/866233Google Scholar
  74. 74.
  75. 75.
    Bansal S, Bansal M, Kumria R (2012) Nanocrystals: current strategies and trends. Int J Res Pharmaceut Biomed Sci 3:406–419Google Scholar
  76. 76.
  77. 77.
    Tournihac F, Simon P (2001) Cosmetic or dermatological topical compositions comprising dendritic polyesters. U.S. Patent 6,287,552Google Scholar
  78. 78.
    Furukawa H, Limura T (2012) Copolymer having carbosiloxane dendrimer structure, and composition and cosmetic containing the same. U.S. Patent 20120263662A1Google Scholar
  79. 79.
    Hyde S, Andersson A, Larsson K (1997) The language of shape, 1st edn. Elsevier, New YorkGoogle Scholar
  80. 80.
    Kimmes SC, Feltin C (2013) Cosmetic composition comprising an oil and a polymer both bearing a hydrogen-bond-generating joining group, and cosmetic treatment process. European Patent 2575751A1Google Scholar
  81. 81.
    Ribier A, Biatry B (2002) Cosmetic or dermatologic oil/water dispersion stabilized with cubic gel particles and method of preparation. European Patent 0711540B1Google Scholar
  82. 82.
    Albrecht H, Schreiber J (2002) Hair care products with disperse liquid crystals exhibiting the cubic phases. W.O. Patent 2002041850A1Google Scholar
  83. 83.
    Simonnet JT, Sonneville O, Legret S (2001) Nanoemulsion based on phosphoric acid fatty acid esters and its uses in the cosmetics, dermatological, pharmaceutical, and/or ophthalmological fields. U.S. Patent 6274150 B1Google Scholar
  84. 84.
    Lens M (2009) Use of fullerenes in cosmetics. Recent Pat Biotechnol 3:118–123PubMedCrossRefGoogle Scholar
  85. 85.
    Ito S, Itoga K, Yamato M, Akamatsu H, Okano T (2010a) The co-application effects of fullerene and ascorbic acid on UV-B irradiated mouse skin. Toxicology 267:27–38PubMedCrossRefGoogle Scholar
  86. 86.
    Ito Y, Warner JH, Brown R, Zaka M, Pfeiffer R, Aono T, Izumi N, Okimoto H, Morton JJ, Ardavan A, Shinohara H, Kuzmany H, Peterlik H, Briggs GA (2010b) Controlling intermolecular spin interactions of La@C(82) in empty fullerene matrices. Phys Chem Chem Phys 12:1618–1623PubMedCrossRefGoogle Scholar
  87. 87.
    Cusan C, Da Ros T, Spalluto G, Foley S, Janot J-M, Seta P, Larroque C, Tomasini MC, Antonelli T, Ferraro L, Prato M (2002) A new multi-charged C60 derivative: synthesis and biological properties. Eur J Org Chem 17:2928–2934CrossRefGoogle Scholar
  88. 88.
    Popov AP, Lademann J, Priezzhev AV, Myllyla R (2005) Effect of size of TiO2 nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin. J Biomed Opt 10:1–9CrossRefGoogle Scholar
  89. 89.
    Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P (2007) Human skin penetration of sunscreen nanoparticles: in vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20:148–154PubMedCrossRefGoogle Scholar
  90. 90.
    Dransfield GP (2000) Inorganic sunscreens. Radiat Prot Dosim 91:271–273CrossRefGoogle Scholar
  91. 91.
    Murphy GM (1999) Sunblocks: mechanisms of action. Photodermatol Photoimmunol Photomed 15:34–36PubMedCrossRefGoogle Scholar
  92. 92.
    Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Yah CS, Simate G, Iyuke SE (2012) Nanoparticles toxicity and their routes of exposures. Pak J Pharm Sci 25:477–491PubMedGoogle Scholar
  94. 94.
    Kreyling WG, Semmler-Behnke M, Moller W (2006) Ultrafine particle-lung interactions: does size matter? J Aerosol Med 19:74–83PubMedCrossRefGoogle Scholar
  95. 95.
    Zhu MT, Feng WY, Wang Y, Wang B, Wang M, Ouyang H, Zhao YL, Chai ZF (2009) Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci 107:342–351PubMedCrossRefGoogle Scholar
  96. 96.
    Wang B, Feng WY, Wang M, Wang TC, Gu YQ, Zhu MT (2008) Acute toxicological impact of nano-and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276CrossRefGoogle Scholar
  97. 97.
    Paul JAB, Roel PFS (2006) Toxicological characterization of engineered nanoparticles. In: Gupta RB, Kompella UB (eds) Nanoparticle technology for drug delivery. Taylor and Francis, New York, pp 161–170Google Scholar
  98. 98.
    Benson HAE (2005) Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv 2:23–33PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Buzea C, Pacheco II, Robble K (2007) Nanomaterial and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71PubMedCrossRefGoogle Scholar
  100. 100.
    Cevc G, Vierl U (2010) Nanotechnology and the transdermal route. A state of the art review and critical appraisal. J Control Release 141:277–299PubMedCrossRefGoogle Scholar
  101. 101.
    Toll R, Jacobi U, Richter H, Lademann J, Schaefer H, Blume-Peytavi U (2004) Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol 123:168–176PubMedCrossRefGoogle Scholar
  102. 102.
    Takeda K, Suzuki K-I, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, Oshio S, Nihei Y, Ihara T, Sugamata M (2009) Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci 55:95–102 2009CrossRefGoogle Scholar
  103. 103.
    Jong WHD, De H, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Poon VKM, Burd A (2004) In vitro cytotoxity of silver: implication for clinical wound care. Burns 30:140–147PubMedCrossRefGoogle Scholar
  105. 105.
    U.S. Food and Drug Administration, Import Alert 66–38. http://www.accessdata.fda.gov/cmsia/importalert 188.html
  106. 106.
    Nanomaterials and the EU Cosmetics Regulation: Implications for Your Company. http://www.gcimagazine.com/business/management/regulation/143553126.html?pa
  107. 107.
    New EU Cosmetics Regulations: A Quick Guide for Busy Formulators. http://chemistscorner.com/new-eu-cosmeticsregulations-a-quick-guide-for-busyformulators/
  108. 108.
    Stafford N (2009) New nano rule for EU cosmetics. Royal society of Chemistry. http://www.rsc.org/chemistryworld/News/2009/November/27110901.asp

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Lipika Ray
    • 1
  • K. C. Gupta
    • 2
  1. 1.Pharmaceutics and Pharmacokinetics DivisionCSIR-Central Drug Research InstituteLucknowIndia
  2. 2.Department of Biological Sciences and Bioengineering (BSBE) and Centre for Environmental Science and Engineering (CESE)Indian Institute of TechnologyKanpurIndia

Personalised recommendations