Advertisement

Septic Shock

  • Kyuseok Kim
  • Han Sung Choi
  • Sung Phil Chung
  • Woon Young Kwon
Chapter

Abstract

For more than 20 years, sepsis has been defined as symptoms associated with the response to microorganism infection, which was more specifically called systemic inflammatory response syndrome (SIRS). With the evidence of organ failure, it was called severe sepsis, and this could lead to hypotension (septic shock). However, with the deep understanding of the pathophysiology of sepsis, sepsis has been known as both inflammatory and anti-inflammatory. Additionally, the classic use of SIRS could lead to overestimation of sepsis. For example, usual common cold could be identified as sepsis in classic definition. With this background, new sepsis definition, Sepsis 3, was introduced and sepsis was defined as a “life-threatening organ dysfunction caused by a dysregulated host response to infection.” The management of sepsis has been changed dramatically, with the development of Surviving Sepsis Campaign, which substantially increased the survival of sepsis. However, this is not with the help of a new drug, but the implementation of a treatment system. Unfortunately, no specific drug for sepsis has survived in clinical use even though many candidate drugs have been successfully investigated in preclinical setting, and this leads to the new approach to the sepsis.

References

  1. 1.
    American College of Chest Physicians. Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20(6):864–74.CrossRefGoogle Scholar
  2. 2.
    Jacob JA. New sepsis diagnostic guidelines shift focus to organ dysfunction. JAMA. 2016;315(8):739–40.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):775–87.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Cohen J, Vincent J-L, Adhikari NKJ, Machado FR, Angus DC, Calandra T, et al. Sepsis: a roadmap for future research. Lancet Infect Dis. 2015;15(5):581–614.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Adhikari NK, Fowler RA, Bhagwanjee S, Rubenfeld GD. Critical care and the global burden of critical illness in adults. Lancet. 2010;376(9749):1339–46.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Hamers L, Kox M, Pickkers P. Sepsis-induced immunoparalysis: mechanisms, markers, and treatment options. Minerva Anestesiol. 2015;81:426–39.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Davenport EE, Burnham KL, Radhakrishnan J, Humburg P, Hutton P, Mills TC, Rautanen A, Gordon AC, Garrard C, Hill AVS, Hinds CJ, Knight JC. Genomic landscape of the individual host response and outcomes in severe sepsis. Lancet Respir Med. 2016;4:259–71.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Radi R. Peroxynitrite, a stealthy biological oxidant. J Biol Chem. 2013;288:26464–72.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Moore JP, Dyson A, Singer M, Fraser J. Microcirculatory dysfunction and resuscitation: why, when, and how. Br J Anaesth. 2015;115(3):366–75.PubMedCrossRefGoogle Scholar
  11. 11.
    Spronk PE, Zandstra DF, Ince C. Bench-to-bedside review: sepsis is a disease of the microcirculation. Crit Care. 2004;8:462–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hernandez G, Bruhn A, Castro R, Regueira T. The holistic view on perfusion monitoring in septic shock. Curr Opin Crit Care. 2012;18(3):280–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Simmons J, Pittet JF. The coagulopathy of acute sepsis. Curr Opin Anaesthesiol. 2015;28:227–36.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gatewood MO, Wemple M, Greco S, Kritek PA, Durvasula R. A quality improvement project to improve early sepsis care in the emergency department. BMJ Qual Saf. 2015;24:787–95.PubMedCrossRefGoogle Scholar
  15. 15.
    Jones SL, Ashton CM, Kiehne L, et al. Reductions in sepsis mortality and costs after design and implementation of a nurse-based early recognition and response program. Jt Comm J Qual Patient Saf. 2015;41:483–91.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Klein Klouwenberg PM, Cremer OL, van Vught LA, et al. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: a cohort study. Crit Care. 2015;19:319.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Contou D, Roux D, Jochmans S, et al. Septic shock with no diagnosis at 24 hours: a pragmatic multicenter prospective cohort study. Crit Care. 2016;20:360.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315:762–74.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Freund Y, Lemachatti N, Krastinova E, et al. Prognostic accuracy of sepsis-3 criteria for in-hospital mortality among patients with suspected infection presenting to the emergency department. JAMA. 2017;317:301–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Williams JM, Greenslade JH, McKenzie JV, Chu K, Brown AF, Lipman J. Systemic inflammatory response syndrome, quick sequential organ function assessment, and organ dysfunction: insights from a prospective database of ED patients with infection. Chest. 2017;151:586–96.PubMedCrossRefGoogle Scholar
  21. 21.
    Meurer WJ, Smith BL, Losman ED, et al. Real-time identification of serious infection in geriatric patients using clinical information system surveillance. J Am Geriatr Soc. 2009;57:40–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Nelson JL, Smith BL, Jared JD, Younger JG. Prospective trial of real-time electronic surveillance to expedite early care of severe sepsis. Ann Emerg Med. 2011;57:500–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.PubMedCrossRefGoogle Scholar
  24. 24.
    Peake SL, Delaney A, Bailey M, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506.PubMedCrossRefGoogle Scholar
  25. 25.
    Yealy DM, Kellum JA, Huang DT, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93.PubMedCrossRefGoogle Scholar
  26. 26.
    Mouncey PR, Osborn TM, Power GS, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372:1301–11.PubMedCrossRefGoogle Scholar
  27. 27.
    Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45:486–552.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Raghunathan K, Bonavia A, Nathanson BH, et al. Association between initial fluid choice and subsequent in-hospital mortality during the resuscitation of adults with septic shock. Anesthesiology. 2015;123:1385–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Caironi P, Tognoni G, Masson S, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370:1412–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Xu JY, Chen QH, Xie JF, et al. Comparison of the effects of albumin and crystalloid on mortality in adult patients with severe sepsis and septic shock: a meta-analysis of randomized clinical trials. Crit Care. 2014;18:702.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Jiang L, Jiang S, Zhang M, Zheng Z, Ma Y. Albumin versus other fluids for fluid resuscitation in patients with sepsis: a meta-analysis. PLoS One. 2014;9:e114666.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–56.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367:124–34.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Eskesen TG, Wetterslev M, Perner A. Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med. 2016;42:324–32.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Cavallaro F, Sandroni C, Marano C, et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med. 2010;36:1475–83.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Casserly B, Phillips GS, Schorr C, et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the Surviving Sepsis Campaign database. Crit Care Med. 2015;43:567–73.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Jansen TC, van Bommel J, Schoonderbeek FJ, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182:752–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010;303:739–46.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Simpson SQ, Gaines M, Hussein Y, Badgett RG. Early goal-directed therapy for severe sepsis and septic shock: a living systematic review. J Crit Care. 2016;36:43–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Gu WJ, Zhang Z, Bakker J. Early lactate clearance-guided therapy in patients with sepsis: a meta-analysis with trial sequential analysis of randomized controlled trials. Intensive Care Med. 2015;41:1862–3.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Arnold RC, Shapiro NI, Jones AE, et al. Multicenter study of early lactate clearance as a determinant of survival in patients with presumed sepsis. Shock. 2009;32:35–9.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Nguyen HB, Rivers EP, Knoblich BP, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004;32:1637–42.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Puskarich MA, Shapiro NI, Massey MJ, Kline JA, Jones AE. Lactate clearance in septic shock is not a surrogate for improved microcirculatory flow. Acad Emerg Med. 2016;23:690–3.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care. 2010;14:R15.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis. 2004;39:206–17.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Povoa P, Coelho L, Almeida E, et al. C-reactive protein as a marker of infection in critically ill patients. Clin Microbiol Infect. 2005;11:101–8.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Schmit X, Vincent JL. The time course of blood C-reactive protein concentrations in relation to the response to initial antimicrobial therapy in patients with sepsis. Infection. 2008;36:213–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Silvestre J, Povoa P, Coelho L, et al. Is C-reactive protein a good prognostic marker in septic patients? Intensive Care Med. 2009;35:909–13.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Wacker C, Prkno A, Brunkhorst FM, Schlattmann P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13:426–35.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kopterides P, Siempos II, Tsangaris I, Tsantes A, Armaganidis A. Procalcitonin-guided algorithms of antibiotic therapy in the intensive care unit: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med. 2010;38:2229–41.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    van der Does Y, Rood PP, Haagsma JA, Patka P, van Gorp EC, Limper M. Procalcitonin-guided therapy for the initiation of antibiotics in the ED: a systematic review. Am J Emerg Med. 2016;34:1286–93.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Prkno A, Wacker C, Brunkhorst FM, Schlattmann P. Procalcitonin-guided therapy in intensive care unit patients with severe sepsis and septic shock—a systematic review and meta-analysis. Crit Care. 2013;17:R291.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    de Jong E, van Oers JA, Beishuizen A, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016;16:819–27.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Cardoso T, Carneiro AH, Ribeiro O, Teixeira-Pinto A, Costa-Pereira A. Reducing mortality in severe sepsis with the implementation of a core 6-hour bundle: results from the Portuguese community-acquired sepsis study (SACiUCI study). Crit Care. 2010;14:R83.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ferrer R, Artigas A, Suarez D, et al. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med. 2009;180:861–6.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Weinstein MP, Reller LB, Murphy JR, Lichtenstein KA. The clinical significance of positive blood cultures: a comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. I. Laboratory and epidemiologic observations. Rev Infect Dis. 1983;5:35–53.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Baron EJ, Miller JM, Weinstein MP, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)(a). Clin Infect Dis. 2013;57:e22–e121.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726–34.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Baigorri F, Russell JA. Oxygen delivery in critical illness. Crit Care Clin. 1996;12(4):971–94.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Luecke T, Roth H, Herrmann P, Joachim A, Weisser G, Pelosi P, Quintel M. Assessment of cardiac preload and left ventricular function under increasing levels of positive end-expiratory pressure. Intensive Care Med. 2004;30(1):119–26.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care. 2011;1(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R, Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580–637.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, Teboul JL. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35(1):64–8.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41(7):1774–81.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Prekker ME, Scott NL, Hart D, Sprenkle MD, Leatherman JW. Point-of-care ultrasound to estimate central venous pressure: a comparison of three techniques. Crit Care Med. 2013;41(3):833–41.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Muller L, Bobbia X, Toumi M, Louart G, Molinari N, Ragonnet B, Quintard H, Leone M, Zoric L, Lefrant JY, AzuRea Group. Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care. 2012;16(5):R188.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Wang CH, Hsieh WH, Chou HC, Huang YS, Shen JH, Yeo YH, Chang HE, Chen SC, Lee CC. Liberal versus restricted fluid resuscitation strategies in trauma patients: a systematic review and meta-analysis of randomized controlled trials and observational studies. Crit Care Med. 2014;42(4):954–61.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, Teboul JL, Monnet X. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41(2):472–80.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Micek ST, McEvoy C, McKenzie M, Hampton N, Doherty JA, Kollef MH. Fluid balance and cardiac function in septic shock as predictors of hospital mortality. Crit Care. 2013;17(5):R246.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Mackenzie DC. Noble VE2. Assessing volume status and fluid responsiveness in the emergency department. Clin Exp Emerg Med. 2014;1(2):67–77.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Guinot PG, de Broca B, Abou Arab O, Diouf M, Badoux L, Bernard E, Lorne E, Dupont H. Ability of stroke volume variation measured by oesophageal Doppler monitoring to predict fluid responsiveness during surgery. Br J Anaesth. 2013;110(1):28–33.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31(4):517–23.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Soubrier S, Saulnier F, Hubert H, Delour P, Lenci H, Onimus T, Nseir S, Durocher A. Can dynamic indicators help the prediction of fluid responsiveness in spontaneously breathing critically ill patients? Intensive Care Med. 2007;33(7):1117–24.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Biais M, de Courson H, Lanchon R, Pereira B, Bardonneau G, Griton M, Sesay M, Nouette-Gaulain K. Mini-fluid challenge of 100 ml of crystalloid predicts fluid responsiveness in the operating room. Anesthesiology. 2017;127(3):450–6.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Guinot PG, Bernard E, Defrancq F, Petiot S, Majoub Y, Dupont H, Lorne E. Mini-fluid challenge predicts fluid responsiveness during spontaneous breathing under spinal anaesthesia: An observational study. Eur J Anaesthesiol. 2015;32(9):645–9.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Leisman DE, Goldman C, Doerfler ME, Masick KD, Dries S, Hamilton E, Narasimhan M, Zaidi G, D’Amore JA, D’Angelo JK. Patterns and outcomes associated with timeliness of initial crystalloid resuscitation in a prospective sepsis and septic shock cohort. Crit Care Med. 2017;45(10):1596–606.  https://doi.org/10.1097/CCM.0000000000002574.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Leisman D, Wie B, Doerfler M, Bianculli A, Ward MF, Akerman M, D’Angelo JK, Zemmel D'Amore JA. Association of fluid resuscitation initiation within 30 minutes of severe sepsis and septic shock recognition with reduced mortality and length of stay. Ann Emerg Med. 2016;68(3):298–311.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Sperry JL, Minei JP, Frankel HL, West MA, Harbrecht BG, Moore EE, Maier RV, Nirula R. Early use of vasopressors after injury: caution before constriction. J Trauma. 2008;64(1):9–14.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, Jahan R, Harvey SE, Bell D, Bion JF, Coats TJ, Singer M, Young JD, Rowan KM. ProMISe Trial Investigators. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301–11.PubMedCrossRefGoogle Scholar
  81. 81.
    Weiskopf RB, Viele MK, Feiner J, Kelley S, Lieberman J, Noorani M, Leung JM, Fisher DM, Murray WR, Toy P, Moore MA. Human cardiovascular and metabolic response to acute, severe isovolemic anemia. JAMA. 1998;279(3):217–21.PubMedCrossRefGoogle Scholar
  82. 82.
    Holst LB, Haase N, Wetterslev J, Wernerman J, Guttormsen AB, Karlsson S, Johansson PI, Aneman A, Vang ML, Winding R, Nebrich L, Nibro HL, Rasmussen BS, Lauridsen JR, Nielsen JS, Oldner A, Pettilä V, Cronhjort MB, Andersen LH, Pedersen UG, Reiter N, Wiis J, White JO, Russell L, Thornberg KJ, Hjortrup PB, Müller RG, Møller MH, Steensen M, Tjäder I, Kilsand K, Odeberg-Wernerman S, Sjøbø B, Bundgaard H, Thyø MA, Lodahl D, Mærkedahl R, Albeck C, Illum D, Kruse M, Winkel P, Perner A, TRISS Trial Group; Scandinavian Critical Care Trials Group. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014;371(15):1381–91.PubMedCrossRefGoogle Scholar
  83. 83.
    Hébert PC, Yetisir E, Martin C, Blajchman MA, Wells G, Marshall J, Tweeddale M, Pagliarello G, Schweitzer I, Transfusion Requirements in Critical Care Investigators for the Canadian Critical Care Trials Group. Is a low transfusion threshold safe in critically ill patients with cardiovascular diseases? Crit Care Med. 2001;29(2):227–34.PubMedCrossRefGoogle Scholar
  84. 84.
    Surviving Sepsis Campaign Bundles-Revised 4/2015 by the SSC Executive Committee. http://www.survivingsepsis.org/SiteCollectionDocuments/SSC_Bundle.pdf.
  85. 85.
    Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, Glass P, Lipman J, Liu B, McArthur C, McGuinness S, Rajbhandari D, Taylor CB, Webb SA, CHEST Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.PubMedCrossRefGoogle Scholar
  86. 86.
    Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.PubMedCrossRefGoogle Scholar
  87. 87.
    Rochwerg B, Alhazzani W, Sindi A, Heels-Ansdell D, Thabane L, Fox-Robichaud A, Mbuagbaw L, Szczeklik W, Alshamsi F, Altayyar S, Ip WC, Li G, Wang M, Wludarczyk A, Zhou Q, Guyatt GH, Cook DJ, Jaeschke R, Annane D, Fluids in Sepsis and Septic Shock Group. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Ann Intern Med. 2014;161(5):347–55.PubMedCrossRefGoogle Scholar
  88. 88.
    Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care. 2015;19:251.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Mitchell KH, Carlbom D, Caldwell E, Leary PJ, Himmelfarb J, Hough CL. Volume overload: prevalence, risk factors, and functional outcome in survivors of septic shock. Ann Am Thorac Soc. 2015;12(12):1837–44.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Delaney AP, Dan A, McCaffrey J, Finfer S. The role of albumin as a resuscitation fluid for patients with sepsis: a systematic review and meta-analysis. Crit Care Med. 2011;39(2):386–91.PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang Z, Chen K. Vasoactive agents for the treatment of sepsis. Ann Transl Med. 2016;4(17):333.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance P, Gottignies P, Vincent JL. SOAP II Investigators. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Marik PE, Mohedin M. The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA. 1994;272(17):1354–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Patel GP, Grahe JS, Sperry M, Singla S, Elpern E, Lateef O, Balk RA. Efficacy and safety of dopamine versus norepinephrine in the management of septic shock. Shock. 2010;33(4):375–80.PubMedCrossRefGoogle Scholar
  95. 95.
    Russell JA, Walley KR, Singer J, Gordon AC, Hébert PC, Cooper DJ, Holmes CL, Mehta S, Granton JT, Storms MM, Cook DJ, Presneill JJ, Ayers D, VASST Investigators. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–87.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Gordon AC, Mason AJ, Thirunavukkarasu N, Perkins GD, Cecconi M, Cepkova M, Pogson DG, Aya HD, Anjum A, Frazier GJ, Santhakumaran S, Ashby D, Brett SJ, VANISH Investigators. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the vanish randomized clinical trial. JAMA. 2016;316(5):509–18.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Landry DW, Levin HR, Gallant EM, Ashton RC Jr, Seo S, D'Alessandro D, Oz MC, Oliver JA. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95(5):1122–5.PubMedCrossRefGoogle Scholar
  98. 98.
    Ferrer R, Martin-Loeches I, Phillips G, Osborn TM, Townsend S, Dellinger RP, Artigas A, Schorr C, Levy MM. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med. 2014;42(8):1749–55.PubMedCrossRefGoogle Scholar
  99. 99.
    Gaieski DF, Mikkelsen ME, Band RA, Pines JM, Massone R, Furia FF, Shofer FS, Goyal M. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit Care Med. 2010;38(4):1045–53.PubMedCrossRefGoogle Scholar
  100. 100.
    Funk DJ, Kumar A. Antimicrobial therapy for life-threatening infections: speed is life. Crit Care Clin. 2011;27(1):53–76.PubMedCrossRefGoogle Scholar
  101. 101.
    NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hébert PC, Heritier S, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco JJ. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.CrossRefGoogle Scholar
  102. 102.
    Keh D, Trips E, Marx G, Wirtz SP, Abduljawwad E, Bercker S, Bogatsch H, Briegel J, Engel C, Gerlach H, Goldmann A, Kuhn SO, Hüter L, Meier-Hellmann A, Nierhaus A, Kluge S, Lehmke J, Loeffler M, Oppert M, Resener K, Schädler D, Schuerholz T, Simon P, Weiler N, Weyland A, Reinhart K, Brunkhorst FM, SepNet–Critical Care Trials Group. Effect of hydrocortisone on development of shock among patients with severe sepsis: the HYPRESS randomized clinical trial. JAMA. 2016;316(17):1775–85.PubMedCrossRefGoogle Scholar
  103. 103.
    Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, Weiss YG, Benbenishty J, Kalenka A, Forst H, Laterre PF, Reinhart K, Cuthbertson BH, Payen D, Briegel J, CORTICUS Study Group. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.PubMedCrossRefGoogle Scholar
  104. 104.
    Annane D, Sébille V, Charpentier C, Bollaert PE, François B, Korach JM, Capellier G, Cohen Y, Azoulay E, Troché G, Chaumet-Riffaud P, Bellissant E. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288(7):862–71.PubMedCrossRefGoogle Scholar
  105. 105.
    Weber-Carstens S, Deja M, Bercker S, Dimroth A, Ahlers O, Kaisers U, Keh D. Impact of bolus application of low-dose hydrocortisone on glycemic control in septic shock patients. Intensive Care Med. 2007;33(4):730–3.PubMedCrossRefGoogle Scholar
  106. 106.
    Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172(5):2731–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Dyson A, Singer M. Animal models of sepsis: why does preclinical efficacy fail to translate to the clinical setting? Crit Care Med. 2009;37(1 Suppl):S30–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Fink MP, Warren HS. Strategies to improve drug development for sepsis. Nat Rev Drug Discov. 2014;13(10):741–58.PubMedCrossRefGoogle Scholar
  109. 109.
    Minneci PC, Deans KJ, Eichacker PQ, Natanson C. The effects of steroids during sepsis depend on dose and severity of illness: an updated meta-analysis. Clin Microbiol Infect. 2009;15(4):308–18.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Berry SM, Connor JT, Lewis RJ. The platform trial: an efficient strategy for evaluating multiple treatments. JAMA. 2015;313(16):1619–20.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med. 1995;333(16):1025–32.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Raghunathan K, Shaw A, Nathanson B, Sturmer T, Brookhart A, Stefan MS, et al. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis*. Crit Care Med. 2014;42(7):1585–91.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Zampieri FG, Ranzani OT, Azevedo LC, Martins ID, Kellum JA, Liborio AB. Lactated ringer is associated with reduced mortality and less acute kidney injury in critically ill patients: a retrospective cohort analysis. Crit Care Med. 2016;44(12):2163–70.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Patel A, Laffan MA, Waheed U, Brett SJ. Randomised trials of human albumin for adults with sepsis: systematic review and meta-analysis with trial sequential analysis of all-cause mortality. BMJ. 2014;349:g4561.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Monnet X, Teboul JL. Assessment of volume responsiveness during mechanical ventilation: recent advances. Crit Care. 2013;17(2):217.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370(17):1583–93.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Phillips GS, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med. 2017;376(23):2235–44.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Ziegler R, Johnscher I, Martus P, Lenhardt D, Just HM. Controlled clinical laboratory comparison of two supplemented aerobic and anaerobic media used in automated blood culture systems to detect bloodstream infections. J Clin Microbiol. 1998;36(3):657–61.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Bochud PY, Bonten M, Marchetti O, Calandra T. Antimicrobial therapy for patients with severe sepsis and septic shock: an evidence-based review. Crit Care Med. 2004;32(11 Suppl):S495–512.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Bouadma L, Luyt CE, Tubach F, Cracco C, Alvarez A, Schwebel C, et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet. 2010;375(9713):463–74.PubMedCrossRefGoogle Scholar
  121. 121.
    Jensen JU, Hein L, Lundgren B, Bestle MH, Mohr TT, Andersen MH, et al. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med. 2011;39(9):2048–58.PubMedCrossRefGoogle Scholar
  122. 122.
    Layios N, Lambermont B, Canivet JL, Morimont P, Preiser JC, Garweg C, et al. Procalcitonin usefulness for the initiation of antibiotic treatment in intensive care unit patients. Crit Care Med. 2012;40(8):2304–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014;2(8):611–20.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Famous KR, Delucchi K, Ware LB, Kangelaris KN, Liu KD, Thompson BT, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195(3):331–8.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Delmas A, Leone M, Rousseau S, Albanese J, Martin C. Clinical review: Vasopressin and terlipressin in septic shock patients. Crit Care. 2005;9(2):212–22.PubMedCrossRefGoogle Scholar
  126. 126.
    Asfar P, Russell JA, Tuckermann J, Radermacher P. Selepressin in septic shock: a step toward decatecholaminization? Crit Care Med. 2016;44(1):234–6.PubMedCrossRefGoogle Scholar
  127. 127.
    Khanna A, English SW, Wang XS, Ham K, Tumlin J, Szerlip H, et al. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med. 2017;377(5):419–30.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Cordemans C, De Laet I, Van Regenmortel N, Schoonheydt K, Dits H, Huber W, et al. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann Intensive Care. 2012;2(Suppl 1 Diagnosis and management of intra-abdominal hyperten):S1.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Han S, Lee SJ, Kim KE, Lee HS, Oh N, Park I, et al. Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci Transl Med. 2016;8(335):335ra55.PubMedCrossRefGoogle Scholar
  130. 130.
    Opal SM, Laterre PF, Francois B, LaRosa SP, Angus DC, Mira JP, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA. 2013;309(11):1154–62.PubMedCrossRefGoogle Scholar
  131. 131.
    Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366(22):2055–64.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Meisel C, Schefold JC, Pschowski R, Baumann T, Hetzger K, Gregor J, et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med. 2009;180(7):640–8.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Fink MP. Cytopathic hypoxia. Mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Crit Care Clin. 2001;17(1):219–37.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Schmidt H, Muller-Werdan U, Hoffmann T, Francis DP, Piepoli MF, Rauchhaus M, et al. Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med. 2005;33(9):1994–2002.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310(16):1683–91.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Tyndall A, Pistoia V. Mesenchymal stem cells combat sepsis. Nat Med. 2009;15(1):18–20.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, et al. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369(14):1306–16.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Heming N, Mazeraud A, Verdonk F, Bozza FA, Chretien F, Sharshar T. Neuroanatomy of sepsis-associated encephalopathy. Crit Care. 2017;21(1):65.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kyuseok Kim
    • 1
  • Han Sung Choi
    • 2
  • Sung Phil Chung
    • 3
  • Woon Young Kwon
    • 4
  1. 1.Department of Emergency MedicineSeoul National University Bundang HospitalGyeonggi-doSouth Korea
  2. 2.Department of Emergency MedicineKyung Hee University School of MedicineSeoulSouth Korea
  3. 3.Department of Emergency MedicineGangnam Severance Hospital, Yonsei University College of MedicineSeoulSouth Korea
  4. 4.Department of Emergency MedicineSeoul National University College of MedicineSeoulSouth Korea

Personalised recommendations