Biosurfactant-Aided Bioprocessing: Industrial Applications and Environmental Impact

  • Reetika Sharma
  • Harinder Singh OberoiEmail author


Surfactants are classified as ionic, nonionic, and zwitterionic surfactants based on the ionic properties of the polar head group. Biosurfactants are surface-active compounds produced by microbes, possessing both hydrophilic and hydrophobic moieties. In biosurfactants, the lipophilic moiety is generally a protein or peptide with a high fraction of hydrophobic side chains or a hydrocarbon chain of a fatty acid with 10 to 18 carbon atoms, whereas the hydrophilic moiety is an ester; hydroxyl, phosphate, and carboxylate group; or sugar. Biosurfactants have specific advantages over chemical surfactants, such as biodegradable and environmental-friendly nature, production at lower temperatures, effectiveness at low concentrations, low toxicity, high selectivity because of the presence of specific functional groups, and efficiency to work at extreme environmental conditions of temperatures, pH, and salinity, rendering them suitable for different industrial applications. However, large-scale commercial application of biosurfactants is impeded because of their high production costs, ineffective bioprocessing methods, less efficient microbial strains, and the exorbitant downstream processing costs. Biosurfactants find potential industrial application in areas, such as disruption of cell biomass, hydrocarbon bioremediation, and heavy metal bioremediation. Different groups of microbes, such as bacteria, yeasts, fungi, and actinomycetes are capable of producing biosurfactants. Some of the extensively studied biosurfactant producing microbial genera include Pseudomonas, Acinetobacter, Bacillus, Candida and Torulopsis. Development of improved and cost-efficient application technologies coupled with genetic engineering and strain improvement techniques and improved production processes will help in large-scale application of biosurfactants in the near future.


Biosurfactants Bioprocessing Bioremediation Lignocellulosic biomass Production cost Rhamnolipids Sophorolipids 


  1. Abraham M (2003) Wetting of hydrophobic rough surfaces: to be heterogeneous or not to be. Langmuir 4:8343–8348Google Scholar
  2. Adrion AC, Nakamura J, Shea D, Aitken MD (2016a) Screening nonionic surfactants for enhanced biodegradation of polycyclic aromatic hydrocarbons remaining in oil after conventional biological treatment. Environ Sci Technol 50(7):3838–3845. doi: 10.1021/acs.est.5b05243 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adrion AC, Singleton DR, Jun N, Damian S, Aitken MD (2016b) Improving polycyclic aromatic hydrocarbon biodegradation in contaminated soil through low-level surfactant addition after conventional bioremediation. Environ Eng Sci 33(9):659–670. doi: 10.1089/ees.2016.0128 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Sust Energ Rev 15:584–593CrossRefGoogle Scholar
  5. Al-Bhary SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ, Al-akhmari HS, Al-Sulaimani HS (2013) Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int Biodeterior Biodegrad 81:141–146CrossRefGoogle Scholar
  6. Alvira P, Ballesteros M, Negro MJ (2013) Progress on enzymatic saccharification technologies for biofuels production. In: Gupta VK, Tuohy MG (eds) Biofuel technologies: recent developments. Springer, Berlin, Germany, pp 145–169CrossRefGoogle Scholar
  7. Amin GA (2010) A potent biosurfactant producing bacterial strain for application in enhanced oil recovery applications. J Pet Environ Biotechnol 1:104–111. doi: 10.4172/2157-7463.1000104 CrossRefGoogle Scholar
  8. Anwar Z, Gulfraz IM (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiation Res Appl Sci 7:163–173CrossRefGoogle Scholar
  9. Appanna VD, Finn H, Pierre M (1995) Exocellular phosphatidylethanolamine production and multiple-metal tolerance in Pseudomonas fluorescens. FEMS Microbiol Lett 131:53–56CrossRefGoogle Scholar
  10. Arguelles-Arias A, Ongena M, Halimi B (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Factories 8:63–71CrossRefGoogle Scholar
  11. Arparna A, Srinikethan G, Hedge S (2011) Effect of addition of biosurfactant produced by Pseudomonas ssp. on biodegradation of crude oil. In: 2nd International proceedings of chemical, biological and environmental engineering, Singapore, 26–28 February 2011, vol 6, p 71–75Google Scholar
  12. Asci Y, Nurbaş M, Acikel YS (2008) A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant. J Hazd Mater 154:663–673CrossRefGoogle Scholar
  13. Aulwar U, Awasthi RS (2016) Production of biosurfactant and their role in bioremediation. J Ecosys Ecograph 6:202. doi: 10.4172/2157-7625.1000202 CrossRefGoogle Scholar
  14. Azarmi R, Ashjaran A (2015) Type and application of some common surfactants. J Chem Pharm Res 7(2):632–640Google Scholar
  15. Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. Hindawi Publishing Corporation ISRN Biotechnology 463074. doi: 10.1155/2014/463074 CrossRefGoogle Scholar
  16. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Environ Microbiol 53:495–508Google Scholar
  17. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications. Appl Microbiol Biotechnol 87:427–444PubMedCrossRefGoogle Scholar
  18. Banat IM, Satpute SK, Cameotra SS (2014) Cost effective technologies and renewable substrates for biosurfactants production. Front Microbiol 5:1–18CrossRefGoogle Scholar
  19. Bardant TB, Abimanyu SH, Hanum AK (2013) Effect of non-ionic surfactant addition to cellulase performance in high substrate loading hydrolysis of palm oil EFB and water hyacinth. Indo J Chem 13(1):53–58CrossRefGoogle Scholar
  20. Baviere M, Degouy D, Lecourtier J (1994) Process for washing solid particles comprising a sophoroside solution. US Patent 5:32–407Google Scholar
  21. Bondioli P, Bella LD, Rivolta G, Zittelli GC, Bassi N, Rodolfi L, Casini D, Prussi M, Chiaramonti D, Tredici MR (2012) Oil production by the marine microalgae Nannochloropsis sp. F and M-M24 and Tetraselmis suecica F and M-M33. Bioresour Technol 114:567–572PubMedCrossRefGoogle Scholar
  22. BP Statistical Review of World Energy (2016) Centre for Energy Economics Research and Policy, Heriot-watt university, 65th edn. Whitehouse Associates/Pureprint Group Limited, London, pp 1–48Google Scholar
  23. Cameron DR, Cooper DG, Neufeld RJ (1988) The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol 54:1420–1425PubMedPubMedCentralGoogle Scholar
  24. Campos JM, Stamford TLM, Sarubbo LA, Luna JM, Rufino RD, Banat IM (2013) Microbial biosurfactants as additives for food industries. Biotechnol Prog 29:1097–1108PubMedCrossRefGoogle Scholar
  25. Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energ Pol 39(7):4222–4234CrossRefGoogle Scholar
  26. Carter KC, Puig-Sellart M (2016) Nanocarriers made from non-ionic surfactants or natural polymers for pulmonary drug delivery. Curr Pharm Des 22(22):3324–3331PubMedCrossRefGoogle Scholar
  27. Chaprao MJ, Ferreira INS, Correa PF, Rufino RD, Luna JM, Silva EJ, Sarubbo LA (2015) Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electron J Biotechnol 18:471–479CrossRefGoogle Scholar
  28. Chavez SG, Maier RM (2011) Biosurfactants: a general overview. In: Chavez SG (ed) Biosurfactants. Springer-Verlag, Berlin, pp 1–11CrossRefGoogle Scholar
  29. Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929PubMedCrossRefGoogle Scholar
  30. Cirigliano MC, Carman GM (1984) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50:846–850Google Scholar
  31. Das P, Mukherjee S, Sen R (2009) Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour Technol 100:4887–4890PubMedCrossRefGoogle Scholar
  32. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Res 61:47–64Google Scholar
  33. de la Cueva SC, Rodríguez CH, Cruz NOS (2016) Changes in bacterial populations during bioremediation of soil contaminated with petroleum hydrocarbons. Water Air Soil Pollut 227:91. doi: 10.1007/s11270-016-2789-z CrossRefGoogle Scholar
  34. Eckard AD, Muthukumarappan K, Gibbons W (2013a) A review of the role of amphiphiles in biomass to ethanol conversion. Appl Sci 3:396–419. doi: 10.3390/app3020396 CrossRefGoogle Scholar
  35. Eckard AD, Muthukumarappan K, Gibbons W (2013b) Enzyme recycling in a simultaneous and separate saccharification and fermentation of corn stover: comparing polymeric micelles of surfactants and polypeptides. Bioresour Technol 132:202–209PubMedCrossRefGoogle Scholar
  36. El-Sheshtawy HS, Aiada I, Osmanb ME, Abo-Elnasr AA, Kobisya AS (2015) Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria. Egypt J Petr 24(2):155–162CrossRefGoogle Scholar
  37. Eriksson T, Borjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microb Technol 31:353–364CrossRefGoogle Scholar
  38. Felse PA, Shah V, Chan J (2007) Sophorolipid biosynthesis by Candida bombicola from industrial fatty acid residues. Enz Microbiol Technol 40:316–323CrossRefGoogle Scholar
  39. Franzetti A, Gandolfi I, Bestetti G, Smyth TJ, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Tech 112:617–627CrossRefGoogle Scholar
  40. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Env Manag 92(3):407–418CrossRefGoogle Scholar
  41. GAF (1950) General Aniline and Film Corp. for their surface active products. For an example of one of GAF Corp’s. early advertisements promoting their trademarked surfactants. Business Week, March 11, p 42Google Scholar
  42. Gerken HG, Donohoe B, Knoshaug EP (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237:239–253. doi: 10.1007/s00425-012-1765-0 CrossRefPubMedGoogle Scholar
  43. Gerson OF, Zajic JE (1978) Surfactant production from hydrocarbons by Corynebacterium lepus, sp. nov. and Pseudomonas asphaltenicus, sp. nov. dev. Ind J Microbiol 19:577–599Google Scholar
  44. Global Food Policy Report (2016) International Food Policy Research Institute (IFPRI), Washington, DC. ISBN: 978-0-89629-582-7, pp 23–34. doi: 10.2499/9780896295827
  45. Golabi E (2016) Experimental study of effect of microbial enhanced oil recovery on rag Sefid reservoir. Int J Chem Stud 4(1):43–45Google Scholar
  46. Green JM, Beestman GB (2007) Recently patented and commercialized formulation and adjuvant technology. Crop Protec 26(3):320–327CrossRefGoogle Scholar
  47. Greenwell HC, Loyd-Evans M, Wenner C (2012) Biofuels, science and society. Interface Focus 3:1–4CrossRefGoogle Scholar
  48. Gregg D, Saddler JN (1996) Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol Bioeng 51:375–383PubMedCrossRefGoogle Scholar
  49. Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30(3):709–732. doi: 10.1016/j.biotechadv.2012.01.001 CrossRefPubMedGoogle Scholar
  50. Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity-a key predictor of the enzymatic hydrolysis rate. FEBS J 277(6):1571–1582PubMedCrossRefGoogle Scholar
  51. Herman DC, Maier RM (2002) Biosynthesis and applications of glycolipid and lipopeptide biosurfactants. In: Kuo TM, Gardner HW (eds) Lipid biotechnology. Marcel Dekker, New York, pp 629–654Google Scholar
  52. Hsieh CC, Cannella D, Jørgensen H, Felby C, Thygesen LG (2015) Cellobiohydrolase and endoglucanase respond differently to surfactants during the hydrolysis of cellulose. Biotechnol Biofuels 8(52):1–10. doi: 10.1186/s13068-015-0242-y CrossRefGoogle Scholar
  53. Huang WC, Kim JD (2013) Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass. Bioresour Technol 149:579–581PubMedCrossRefGoogle Scholar
  54. Information Handling Services (2016) Chemical Economics Handbook: Surfactants, household detergents and their raw materials, p 16–19. (
  55. Ikegami M, Whitsett JA, Jobe A, Ross G, Fisher J, Korfhagen T (2000) Surfactant metabolism in SP-D gene-targeted mice. Am J Physiol Lung Cell Mol Physiol 279(3):468–476CrossRefGoogle Scholar
  56. Ishigami Y, Zhang Y, Ji F (2000) Spiculisporic acid. Functional development of biosurfactants. Chim Oggi 18:32–34Google Scholar
  57. Ivankovic T, Hrenovic J (2010) Surfactants in the environment: a review. Arh Hig Rada Toksikol 61:95–110. doi: 10.2478/10004-1254-61-2010-1943 CrossRefPubMedGoogle Scholar
  58. Jadhav M, Kalme S, Tamboli D (2011) Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of brown 3REL. J Basic Microbiol 51:1–12CrossRefGoogle Scholar
  59. Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. 3. Biotech 5(2):123–127. doi: 10.1007/s13205-014-0214-0 CrossRefGoogle Scholar
  60. Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98(1):112–122PubMedCrossRefPubMedCentralGoogle Scholar
  61. Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2002PubMedCrossRefGoogle Scholar
  62. Juwarkar AA, Dubey KV, Nair A, Singh SK (2008) Bioremediation of multi-metal contaminated soil using biosurfactant—a novel approach. Ind J Microbiol 48:142–146CrossRefGoogle Scholar
  63. Kaar WE, Holtzapple M (1998) Benefits from tween during enzymatic hydrolysis of corn stover. Biotechnol Bioeng 59:419–427PubMedCrossRefGoogle Scholar
  64. Kapadia SG, Yagnik BN (2013) Current trend and potential for microbial biosurfactants. Asian J Exp Biol Sci 4:1–8Google Scholar
  65. Karmee SK, Lin CSK (2014) Valorisation of food waste to biofuel: current trends and technological challenges. Sustainable Chem Proc 2:22–32CrossRefGoogle Scholar
  66. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375CrossRefGoogle Scholar
  67. Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61(3):1017–1026CrossRefGoogle Scholar
  68. Kim JH, Lee JC, Pak D (2011) Feasibility of producing ethanol from food waste. Waste Manag 31:2121–2125PubMedCrossRefGoogle Scholar
  69. Kiran GS, Sabu A, Selvin J (2010) Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J Biotechnol 148:221–225PubMedCrossRefGoogle Scholar
  70. Kralova I, Sjoblom J (2009) Surfactants used in food industry: a review. J Dispers Sci Technol 30:1363–1383CrossRefGoogle Scholar
  71. Krieger N, Doumit C, David AM (2010) Production of microbial biosurfactants by solid-state cultivation. Adv Exp Med Biol 672:203–210PubMedCrossRefGoogle Scholar
  72. Kristensen JB, Borjesson J, Maria H, Tjerneld BF, Jorgensen H (2007) Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enz Microb Technol 40:888–895CrossRefGoogle Scholar
  73. Kugler JH, Le Roes-Hill M, Syldatk C, Hausmann R (2015) Surfactants tailored by the class Actinobacteria. Front Microbiol 6:212–219. doi: 10.3389/fmicb.2015.00212 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Kumar R, Tabatabaei M, Karimi K, Horváth IS (2016) Recent updates on lignocellulosic biomass derived ethanol – a review. Biofuel Res J 9:347–356CrossRefGoogle Scholar
  75. Lai YJS, De Francesco F, Aguinaga A, Parameswaran P, Rittmanna BE (2016) Improving lipid recovery from Scenedesmus wet biomass by surfactant-assisted disruption. Green Chem 18:1319–1326CrossRefGoogle Scholar
  76. Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31(4):575–584PubMedCrossRefGoogle Scholar
  77. Ławniczak L, Marecik R, Chrzanowski L (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lee DH (2011) Algal biodiesel economy and competition among biofuels. Bioresour Technol 102:43–49PubMedCrossRefGoogle Scholar
  79. Lee RA, Lavoie JM (2013) From first – to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Animal Front 3(2):6–11CrossRefGoogle Scholar
  80. Li Y, Sun Z, Ge X, Zhang J (2016) Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose. Biotechnol Biofuels 9(20):1–10. doi: 10.1186/s13068-016-0434-0 CrossRefGoogle Scholar
  81. Liang K, Zhang Q, Cong W (2012) Enzyme-assisted aqueous extraction of lipid from microalgae. J Agric Food Chem 60(47):11771–11776. doi: 10.1021/jf302836v CrossRefPubMedGoogle Scholar
  82. Liang LX, Qing QX, Ming LH, Hao LZ, Xin ZN, Hao HJ, Xia PY (2016) Enhancement of lignosulfonate-based polyoxyethylene ether on enzymatic hydrolysis of lignocelluloses. Indus Crops Prod 80:86–92CrossRefGoogle Scholar
  83. Liu JF, Mbadinga SM, Yang SZ, Gu JD, Mu BM (2015) Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. Int J Mol Sci 16:4814–4837. doi: 10.3390/ijms16034814 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Luo L, van der Voet E, Huppes G (2010) Biorefining of lignocellulosic feedstock—technical, economic and environmental considerations. Bioresour Technol 101(13):5023–5032PubMedCrossRefGoogle Scholar
  85. Maier RM, Chávez SG (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633PubMedCrossRefGoogle Scholar
  86. Mainkar AR, Jolly CI (2001) Formulation of natural shampoos. Int J Cosmetic Sci 23:59–62CrossRefGoogle Scholar
  87. Makkar RS, Cameotra SS (1999) Biosurfactant production by microorganisms on unconventional carbon sources. J Surfact Deterg 2:2–16Google Scholar
  88. Makkar RS, Cameotra SS (2002) An update on use of unconventional substrates for biosurfactants production and their new applications. Appl Microbiol Biotechnol 58:428–434PubMedCrossRefGoogle Scholar
  89. Makkar RS, Banat IM, Cameotra SS (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:5–17PubMedPubMedCentralCrossRefGoogle Scholar
  90. Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565. doi: 10.1016/j.tibtech.2012.07.003 CrossRefPubMedGoogle Scholar
  91. Matsakas L, Kekos D, Loizidou M, Christakopoulos P (2014) Utilization of household food waste for the production of ethanol at high dry material content. Biotechnol Biofuels 7:4–12PubMedPubMedCentralCrossRefGoogle Scholar
  92. McClure CD, Schiller NL (1996) Inhibition of macrophage phagocytosis by Pseudomonas aeruginosa rhamnolipids in vitro and in vivo. Curr Microbiol 33:109–117PubMedCrossRefGoogle Scholar
  93. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energ Combustion Sci 38(4):522–550CrossRefGoogle Scholar
  94. Mesquita JF, Ferraz A, Aguiar A (2016) Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse. Bioprocess Biosyst Eng 39:441–448. doi: 10.1007/s00449-015-1527-z CrossRefPubMedGoogle Scholar
  95. Min BC, Bhayani BV, Jampana V, Ramarao BV (2015) Enhancement of the enzymatic hydrolysis of fines from recycled paper mill waste rejects. Bioresour Bioproc 2(40):1–10. doi: 10.1186/s40643-015-0068-2 CrossRefGoogle Scholar
  96. Mishra M, Muthuprasanna P, Surya prabha K, Rani PS, Babu IAS, Chandiran IS, Arunachalam G, Shalini S (2009) Basics and potential applications of surfactants – a review. Int J PharmTech Research, 1: 1354-1365, ISSN:0974-4304Google Scholar
  97. Morsy SMI (2014) Review article: role of surfactants in nanotechnology and their applications. Int J Curr Microbiol App Sci 3(5):237–260Google Scholar
  98. Mujumdar S, Bashetti S, Pardeshi S, Thombre RS (2016) Industrial applications of biosurfactants. In: Thangadurai D, Sangeetha J (eds) Industrial biotechnology: sustainable production and bioresource utilization. CRC Press, Boca Raton, pp 61–90. ISBN 177188262X, 9781771882620Google Scholar
  99. Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198PubMedCrossRefGoogle Scholar
  100. Mulligan CN, Gibbs BF (2004) Types, production and applications of biosurfactants. Proc Ind Nat Sci Acad 1:31–55Google Scholar
  101. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597CrossRefGoogle Scholar
  102. Nanda S, Mohammad J, Reddy S, Kozinski J, Dalai A (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conver Bioref 4:157–191. doi: 10.1007/s13399-013-0097-z CrossRefGoogle Scholar
  103. Naqvi M, Yan J (2015) First-generation biofuels. Handbook of clean energy systems. Wiley, Chichester, pp 1–18. doi: 10.1002/9781118991978.hces207 CrossRefGoogle Scholar
  104. Nasirpour N, Mousavi SM, Shojaosadati SA (2014) A novel surfactant-assisted ionic liquid pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Bioresour Technol 169:33–37PubMedCrossRefGoogle Scholar
  105. Nievas ML, Commendatore MG, Estevas JL, Bucala V (2008) Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium. J Hazard Matter 154:96–104CrossRefGoogle Scholar
  106. Oberoi HS, Vadlani PV, Madl RL, Saida L, Abeykoon JP (2010) Ethanol production from orange peels: two-stage hydrolysis and fermentation studies using optimized parameters through experimental design. J Agric Food Chem 58:3422–3429PubMedCrossRefGoogle Scholar
  107. Park JW, Takahata Y, Kajiuchi T, Akehata T (1992) Effects of nonionic surfactant on enzymatic hydrolysis of used newspaper. Biotechnol Bioeng 39:117–120PubMedCrossRefGoogle Scholar
  108. Parnthong J, Kungsanant S (2014) Statistical optimization for application of nonionic surfactants in enzymatic hydrolysis of palm fiber for ethanol production. Int J Chem Eng App 5:23–25Google Scholar
  109. Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mat 161(30):633–640CrossRefGoogle Scholar
  110. Pereira BL, Francisco SM, da Silva SS (2016) Recent advances in sustainable production and application of biosurfactants in Brazil and Latin America. Indus Biotechnol 12(1):31–39. doi: 10.1089/ind.2015.0027 CrossRefGoogle Scholar
  111. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National laboratory, US Department of Agriculture (USDA), pp 1–54. Available electronically at:
  112. Perlack RD, Stokes BJ (2011) US billion-ton update: biomass supply for a bioenergy and bioproducts industry. US Department of Energy, Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  113. Pleissner D, Lam WC, Sun Z, Lin CSK (2013) Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour Technol 137:139–146PubMedCrossRefGoogle Scholar
  114. Pleissner D, Kwan TH, Lin CSK (2014) Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. Bioresour Technol 158:48–54PubMedCrossRefGoogle Scholar
  115. Płociniczak MP, Płaza GA, Seget ZP, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654. doi: 10.3390/ijms12010633 CrossRefGoogle Scholar
  116. Pothiraj C, Kanmani P, Balaji P (2006) Bioconversion of lignocellulose materials. Mycobiol 34(4):159–165CrossRefGoogle Scholar
  117. Qing Q, Yang B, Wyman CE (2010) Impact of surfactants on pretreatment of corn stover. Bioresour Technol 101:5941–5951PubMedCrossRefGoogle Scholar
  118. Rahman PKSM, Gakpe E (2008) Production, characterization and applications of biosurfactants-review. Biotechnol 7:360–370. doi: 10.3923/biotech.2008.360.370 CrossRefGoogle Scholar
  119. Rawat R, Srivastava N, Chadha BS, Oberoi HS (2014) Generating fermentable sugars from rice straw using functionally active cellulolytic enzymes from Aspergillus niger HO. Energ Fuels 28:5067–5075. doi: 10.1021/ef500891g CrossRefGoogle Scholar
  120. Reddy AS, Chen CY, Baker SC, Chen CC, Jean JS, Fan CW, Chen HR, Wang JC (2009) Synthesis of silver nanoparticles using surfactin: a biosurfactant stabilizing agent. Mater Lett 63:1227–1230CrossRefGoogle Scholar
  121. Reis RS, Pacheco GJ, Pereira AG, Freire DMG (2013) Biosurfactants: production and applications. Chapter 2 in biodegradation-life of science, pp 31–63. Google Scholar
  122. Rosa Estela QCE, Luis FMJ (2013) Hydrolysis of biomass mediated by cellulases for the production of sugars. In: Chandel AK, da- Silva SS (eds) Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization. Rijeka, Croatia, pp 119–155. doi: 10.5772/53719 CrossRefGoogle Scholar
  123. Rosenberg E, Rubinovitz C, Legmann R, Ron EZ (1988) Purification and chemical properties of Acinetobacter calcoaceticus A2 Biodispersan. Appl Environ Microbiol 54:323–326PubMedPubMedCentralGoogle Scholar
  124. Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016PubMedPubMedCentralCrossRefGoogle Scholar
  125. Saharan BS, Sahu RK, Sharma D (2011) A review on biosurfactants: fermentation, current developments and perspectives. Genetic Eng Biotechnol J 29:1–14Google Scholar
  126. Saini JK, Patel AK, Adsul M, Singhania RR (2016) Cellulase adsorption on lignin: a roadblock for economic hydrolysis of biomass. Renew Energy 98:29–42CrossRefGoogle Scholar
  127. Sajjadi S, Jahanzad F, Yianneskis M, Brooks BW (2003) Phase inversion in abnormal O/W/O emulsions: effect of surfactant hydrophilic−lipophilic balance. Ind Eng Chem Res 42(15):3571–3577. doi: 10.1021/ie021044e CrossRefGoogle Scholar
  128. Salager JL (2002) Surfactants: types and uses. Laboratory of formulation, interfaces rheology and processes, FIRP booklet E300:1–48Google Scholar
  129. Salam KA, Velasquez-Orta SB, Harvey AP (2016) Surfactant-assisted direct biodiesel production from wet Nannochloropsis oculata by in situ transesterification/reactive extraction. Biofuel Res J 9:366–371CrossRefGoogle Scholar
  130. Samiey B, Cheng CH, Wu J (2014) Effects of surfactants on the rate of chemical reactions. J Chem Article ID 908476:1–14. Google Scholar
  131. Santos DKF, Rufino RD, Luna JM, Santos VA, Salgueiro AA, Sarubbo LA (2013) Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. J Pet Sci Eng 105:43–50CrossRefGoogle Scholar
  132. Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Review: biosurfactants multifunctional biomolecules of the 21st century. Int J Mol Sci 17:401–432. doi: 10.3390/ijms17030401 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energ 37:19–27CrossRefGoogle Scholar
  134. Sawadogo A, Otoidobiga HC, Nitiema LW, Traore AS, Dianou D (2016) Optimization of hydrocarbons biodegradation by bacterial strains isolated from wastewaters in Ouagadougou, Burkina Faso: case study of SAE 40/50 used oils and diesel. J Agric Chem Environ 5:1–11. Google Scholar
  135. Schramm LL, Stasiuk EN, Marangoni GD (2003) Surfactants and their applications. Ann Rep Prog Chem 99:30–48. doi: 10.1039/b208499f CrossRefGoogle Scholar
  136. Sekhon BS (2013) Surfactants: pharmaceutical and medicinal aspects. J Pharma Technol Res Manage 1:11–36Google Scholar
  137. Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energ Combust 34:714–724CrossRefGoogle Scholar
  138. Seo JY, Kumar RP, Kim B, Seo JC, Park JY, Na JG, Jeon SG, Park SB, Lee K, Oh YK (2016) Downstream integration of microalgae harvesting and cell disruption by means of cationic surfactant-decorated Fe3O4 nanoparticles. Green Chemi 18:1–9. doi: 10.1039/c6gc00904b CrossRefGoogle Scholar
  139. Sharma R, Rawat R, Bhogal RS, Oberoi HS (2015) Multi-component thermostable cellulolytic enzyme production by Aspergillus niger HN-1 using pea pod waste: appraisal of hydrolytic potential with lignocellulosic biomass. Process Biochem 50:696–704CrossRefGoogle Scholar
  140. Sheng J, Vannela R, Rittmann BE (2011) Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 6803. J Env Sci Technol 8(8):3795–3802CrossRefGoogle Scholar
  141. Shete AM, Wadhawa G, Banat IM, Chopade BA (2006) Mapping of patents on bioemulsifier and biosurfactant: a review. J Scient Indus Res 65:91–115Google Scholar
  142. Sifour M, Al-Jilawi MH, Aziz GM (2007) Emulsification properties of biosurfactant produced from Pseudomonas aeruginosa RB 28. Pak J Biol Sci 10:1331–1335PubMedCrossRefGoogle Scholar
  143. Silva RC, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15:12523–12542PubMedCentralCrossRefGoogle Scholar
  144. Singh P, Cameotra SS (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophy Res Commun 319:291–297CrossRefGoogle Scholar
  145. Sipos B, Szilagyi M, Sebestyen Z, Perazzini R, Dienes D, Jakab E, Crestini C, Reczey K (2011) Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses. C R Biol 334:812–823PubMedCrossRefGoogle Scholar
  146. Soni SK, Batra N, Bansal N, Soni R (2010) Bioconversion of sugarcane bagasse into second generation bioethanol after enzymatic hydrolysis with-in house produced cellulases from Aspergillus sp. S4B2F. Bioresources 5(2):741–758Google Scholar
  147. Srivastava N, Rawat R, Sharma R, Oberoi HS, Srivastava M, Singh J (2014) Effect of nickel–cobaltite nanoparticles on production and thermostability of cellulases from newly isolated thermotolerant Aspergillus fumigatus NS (class: Eurotiomycetes). Appl Biochem Biotechnol 174:1092–1103. doi: 10.1007/s12010-014-0940-0 CrossRefPubMedGoogle Scholar
  148. Stevens CE (1969) In Kirk-Othmer encyclopedia of chemical technology, vol 19, 2nd edn. Wiley, New York, pp 507–593Google Scholar
  149. Suthar H, Hingurao K, Desai A, Nerurkar A (2008) Evaluation of bioemulsifier mediated microbial oil recovery using sand pack column. J Microbiol Methods 75:225–230PubMedCrossRefGoogle Scholar
  150. Teichmann B, Linne U, Hewald S (2007) A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol 66:525–533PubMedCrossRefGoogle Scholar
  151. Toren A, Navon-Venezia S, Ron EZ, Rosenberg E (2001) Emulsifying activity of purified alas an proteins from Acinetobacter radioresistens. Appl Environ Microbiol 67:110–1106CrossRefGoogle Scholar
  152. Transparency Market Research (2014) Microbial biosurfactants market (rhamnolipids, sophorolipids, mannosylerythritol lipids for household detergents, industrial & institutional cleaners, personal care, oilfield chemicals, agricultural chemicals, food processing, textile and other applications – global industry analysis, size, share, growth, trends and forecast, 2014–2020. Available at:
  153. Ulloa G, Coutens C, Sánchez M, Jineiro J, Fábregas J, Deive FJ, Rodríguez A, Nuneza MJ (2012) On the double role of surfactants as microalga cell lysis agents and antioxidants extractants. Green Chem 14:1044–1051CrossRefGoogle Scholar
  154. Urum K, Pekdemir T (2004) Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 57:1139–1150PubMedCrossRefGoogle Scholar
  155. Wang H, Mochidzuki K, Kobayashi S (2013) Effect of bovine serum albumin (BSA) on enzymatic cellulose hydrolysis. Appl Biochem Biotechnol 170:541–551. doi: 10.1007/s12010-013-0208-0 CrossRefPubMedGoogle Scholar
  156. Wright M, Brown R (2007) Comparative economics of biorefineries based on the biochemical and thermochemical platforms. Biofuels Bioprod Biorefin 1:49–56CrossRefGoogle Scholar
  157. Xin L, Hong-ying H, Yu-ping Z (2011) Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour Technol 102:3098–3102CrossRefGoogle Scholar
  158. Yakimov M, Amro M, Bock M (1997) The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. J Pet Sci Eng 18:147–160CrossRefGoogle Scholar
  159. Yan S, Li J, Chen X, Wu J, Wang P, Ye J, Yao J (2011) Enzymatical hydrolysis of food waste and ethanol production from the hydrolysate. Renew Energ 36:1259–1265CrossRefGoogle Scholar
  160. Yan S, Chen X, Wu J, Wang P (2013) Pilot scale production of fuel ethanol from concentrated food waste hydrolysates using Saccharomyces cerevisiae H058. Bioprocess Biosyst Eng 36:937–946PubMedCrossRefGoogle Scholar
  161. Yang X, Lee JH, Yoo HY, Shin HY, Thapa LP, Park C, Kim SW (2014) Production of bioethanol and biodiesel using instant noodle waste. Bioprocess Biosyst Eng. doi: 10.1007/s00449-014-1135-3 CrossRefPubMedGoogle Scholar
  162. Yernazarova A, Kayirmanova G, Baubekova A, Zhubanova A (2016) Chapter 5: Microbial enhanced oil recovery. “chemical enhanced oil recovery (cEOR) – a practical overview”,. Ed. Laura RZ, InTech, Rijeka ISBN 978-953-51-2701-7, doi:  10.5772/64805 CrossRefGoogle Scholar
  163. Ying GG (2006) Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int 32:417–431PubMedCrossRefGoogle Scholar
  164. Yoon SH, Robyt JF (2005) Activation and stabilization of 10 starch-degrading enzymes by Triton X-100, polyethylene glycols, and polyvinyl alcohols. Enzyme Microb Technol 37:556–562CrossRefGoogle Scholar
  165. Zeng Y, Zhao S, Yang S, Ding SY (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45PubMedCrossRefGoogle Scholar
  166. Zhang Z, Donaldson H, Ma X (2012) Advancements and future directions in enzyme technology for biomass conversion. Biotechnol Adv 30(4):913–919PubMedCrossRefGoogle Scholar
  167. Zosim Z, Gutnick DL, Rosenberg E (1982) Properties of hydrocarbon-in-water emulsions stabilized by Acinetobacter RAG-1 emulsan. Biotechnol Bioeng 24:281–292PubMedCrossRefGoogle Scholar
  168. Zulianello L, Canard C, Köhler T, Caille D, Lacroix JS, Meda P (2006) Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun 74:3134–3147PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Environmental ScienceDr YS Parmar University of Horticulture and ForestrySolanIndia
  2. 2.Division of Post Harvest Technology and Agricultural EngineeringICAR- Indian Institute of Horticultural ResearchBengaluruIndia

Personalised recommendations