Advertisement

Fungal Inulinolytic Enzymes: A Current Appraisal

  • Hemant Kumar Rawat
  • Hemant Soni
  • Naveen KangoEmail author
Chapter

Abstract

Inulinolytic enzymes produced by molds and yeasts have many applications. Inulin is being looked upon as an abundant and renewable source of fructose, a low-calorie sweetener, and a readily fermentable substrate. Inulin can be exploited at industrial scale for generation of high-fructose syrup (HFS) using fungal exoinulinases and may also be selectively hydrolyzed using endoinulinase for generation of prebiotic inulooligosaccharides (IOS). Some members of Aspergilli, Penicillia, and a yeast, Kluyveromyces marxianus, are known as potential producers of inulin-hydrolyzing enzymes; however, recently, it has been characterized from extremophilic and marine-derived microorganisms as well. Inulinases find applications in nutraceutical, feed, pharmaceutical, and biofuel industries. This chapter discusses production, molecular aspects, and biotechnological applications of inulinases.

Keywords

Exoinulinase Endoinulinase Fungi Yeast Inulin Fructose 

References

  1. Altunbas C, Uygun M, Uygun DA, Akgol S, Denizli A (2013) Immobilization of inulinase on concanavalin A-attached super macroporous cryogel for production of high fructose syrup. Appl Biochem Biotechnol 170:1909–1921PubMedGoogle Scholar
  2. Arand M, Golubev AM, Neto JR, Polikarpov I, Wattiez R, Korneeva OS, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Shishliannikov SM, Chepurnaya OV, Neustroev KN (2002) Purification, characterization, gene cloning and preliminary X-ray data of the exo-inulinase from Aspergillus awamori. Biochem J 362:131–135PubMedPubMedCentralGoogle Scholar
  3. Cao TS, Wang GY, Chi Z, Wang ZP, Chi ZM (2013) Cloning, characterization and heterelogous expression of the INU1 gene from Cryptococcus aureus HYA. Gene 516:255–262PubMedGoogle Scholar
  4. Chen H, Chen X, Li Y, Wang J, Jin Z, Xu X, Zhao J, Chen T, Xie Z (2009) Purification and characterization of exo- and endo-inulinase from Aspergillus ficuum JNSP5-06. Food Chem 115:1206–1212Google Scholar
  5. Chen H, Chen X, Chen T, Xu X, Jin Z (2011) Extraction optimization of inulinase obtained by solid state fermentation of Aspergillus ficuum JNSP5-06. Carb Pol 85:446–451Google Scholar
  6. Chen XM, Xu XM, Jin ZY, Chen HQ (2012) Expression of an endoinulinase from Aspergillus ficuum JNSP5-06 in Escherichia coli and its characterization. Carb Pol 88:748–753Google Scholar
  7. Chen XM, Xu XM, Jin ZY, Chen HQ (2013) Expression of an endoinulinase gene from Aspergillus ficuum in Escherichia coli and its characterization. Carb Pol 92:1984–1990Google Scholar
  8. Chen M, Lei X, Chen C, Zhang S, Xie J, Wei D (2015) Cloning, over expression, and characterization of a highly active endoinulinase gene from Aspergillus fumigatus Cl1 for production of inulo-oligosaccharides. Appl Biochem Biotechnol 175:1153–1167PubMedGoogle Scholar
  9. Chi Z, Chi Z, Zhang T, Liu G, Yue L (2009) Inulinase-expressing microorganisms and applications of inulinases. Appl Microbiol Biotechnol 82:211–220PubMedGoogle Scholar
  10. Chi Z, Zhang T, Cao TS, Liu XY, Cui W, Zhao CH (2011) Biotechnological potential of inulin for bioprocesses. Bioresour Technol 102:4295–4303PubMedGoogle Scholar
  11. Cui W, Wang Q, Zhang F, Zhang SC, Chi ZM, Madzak C (2011) Direct conversion of inulin into single cell protein by the engineered Yarrrowia lipolytica carrying inulinase gene. Proc Biochem 46:1442–1448Google Scholar
  12. Dilipkumar M, Rajsimman M, Rajamohan N (2013) Inulinase production in a packed bed reactor by solid state fermentation. Carb Pol 96:196–199Google Scholar
  13. Dinarvand M, Rezaee M, Masomian M, Jazayeri SD, Zareian M, Abbasi S, Ariff AB (2013) Effect of C/N ratio and media optimization through response surface methodology on simultaneous productions of intra- and extracellular inulinase and invertase from Aspergillus niger ATCC 20611. Biomed Res Int. doi.org/ https://doi.org/10.1155/2013/508968Google Scholar
  14. Flores-Gallegos AC, Morlett-Chavez JA, Aguilar CN, Riutort M, Rodriguez-Herrera R (2015) Gene encoding inulinase isolated from Penicillium citrinum ESS and its molecular phylogeny. Appl Biochem Biotechnol 175:1358–1370PubMedGoogle Scholar
  15. Gao J, Yuan W, Li Y, Xiang R, Hou S, Zhong S, Bai F (2015) Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology. Biotechnol Biofuel 8:115Google Scholar
  16. Gill PK, Manhas RK, Singh P (2006) Purification and properties of a heat stable exoinulinase isoform from Aspergillus fumigatus. Bioresour Technol 97:894–902PubMedGoogle Scholar
  17. Gong F, Sheng J, Chi Z, Li J (2007) Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase. J Ind Microbiol Biotechnol 34:179–185PubMedGoogle Scholar
  18. Goosen C, Van der Maarel MJEC, Dijkhuizen I (2008) Exo-inulinase of Aspergillus niger N402: A hydrolytic enzyme withsignificant transfructosylating activity. Biocatal Biotrans 26:49–58Google Scholar
  19. He M, Wu D, Wu J, Chen J (2014) Enhanced expression of endoinulinase from Aspergillus niger by codon optimization in Pichia pastoris and its application in inulo-oligosaccharide production. J Ind Microbiol Biotechnol 41:105–114PubMedGoogle Scholar
  20. Housseiny MM (2014) Production of an endoinulinase from Aspergillus niger AUMC 9375, by solid state fermentation of agricultural waste, with purification and characterization of the free and immobilized enzyme. J Microbiol 52:389–398PubMedGoogle Scholar
  21. Hu N, Yuan B, Sun J, Wang SA, Li FL (2012) Thermotolarant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol 95:1359–1368PubMedGoogle Scholar
  22. Jain SC, Jain PC, Kango N (2012) Production of inulinase from Kluyveromyces marxianus using dahlia tuber extract. Braz J Microbiol 43:62–69PubMedPubMedCentralGoogle Scholar
  23. Kango N (2008) Production of inulinase using tap roots of dandelion (Taraxacum officinale) by Aspergillus niger. J Food Eng 85:473–478Google Scholar
  24. Kango N, Jain SC (2011) Production and properties of microbial inulinases: recent advances. Food Biotechnol 4:165–212Google Scholar
  25. Kelly G (2009) Inulin-type prebiotics a review: part 2. Altern Medi Rev 14:36–55Google Scholar
  26. Kim BW, Kim HW, Nam SW (1997) Continuous production if fructose-syrup from inulin by immobilized inulinase from recombinant Saccharomyces cerevisiae. Biotechnol Bioproc Eng 2:90–93Google Scholar
  27. Kuhn GDO, Rosa CD, Silva MF, Treichel H, Oliveira DD, Oliveira JV (2012) Synthesis of fructooligosaccharides from Aspergillus niger commercial inulinase immobilized in montmorillonite pretreated in pressurized propane and LPG. Appl Biochem Biotechnol 169:750–760Google Scholar
  28. Kuntz MGF, Fiates GMR, Teixeira E (2013) Characteristics of prebiotic food products containing inulin. British Food J 115:235–251Google Scholar
  29. Kwon YM, Kim HY, Choi YJ (2000) Cloning and characterization of Pseudomonas mucidolens exo-inulinase. J Microbiol Biotechnol 10:238–243Google Scholar
  30. Li Y, Liu GL, Chi ZM (2013) Ethanol production from inulin and unsterilized meal of Jerusalem artichoke tubers by Saccharomyces sp. W0 expressing the endo-inulinase gene from Arthrobacter sp. Bioresour Technol 147:254–259PubMedGoogle Scholar
  31. Liu XY, Chi Z, Liu GL, Wang F, Madzak C, Chi ZM (2010) Inulin hydrolysis and citric acid production from inulin using the surface-engineered Y. lipolytica displayed inulase. Metabol Eng 12:469–476Google Scholar
  32. Liu GL, Chi Z, Chi ZM (2013) Molecular characterization and expression of microbial inulinase genes. Crit Revi Microbiol 39:152–165Google Scholar
  33. Liu GL, Fu GY, Chi Z, Chi ZM (2014) Enhanced expression of the codon optimized exo-inulinase gene from the yeast Meyerozyma guilliermondii in Saccharomyces sp. W0 and bioethanol production from inulin. Appl Microbiol Biotechnol 98:9129–9138PubMedGoogle Scholar
  34. Ma JY, Cao HL, Tan HD, Hu XJ, Liu WJ, Du YG, Yin H (2015) Cloning, expression, characterization, and mutagenesis of a thermostable exoinulinase from Kluyveromyces cicerisporus. Appl Biochem Biotechnol 178:144–158PubMedGoogle Scholar
  35. Mansouri M, Houbraken J, Samson RA, Frisvad JC, Christensen M, Tuthill DE, Koutaniemi S, Hatakka A, Lankinen P (2013) Penicillium subrubescens, a new species efficiently producing inulinase. Antonie Van Leeuwenhoek 103:1343–1357PubMedGoogle Scholar
  36. Mazutti MA, Zabot G, Boni G, Skovronski A, de Oliveira D, Luccio MD, Rodrigues MI, Treichel H, Maugeri F (2010) Kinetics of inulinase production by solid-state fermentation in a packed-bed bioreactor. Food Chem 120:163–173Google Scholar
  37. Moriyama S, Akimoto H, Suetsugu N, Kawasaki S, Nakamura T, Ohta K (2002) Purification and properties of an extracellular exoinulinase from Penicillium sp. strain TN-88 and sequence analysis of the encoding gene. Biosci Biotechnol Biochem 66:1887–1896PubMedGoogle Scholar
  38. Mutanda T, Wilhelmi BS, Whiteley CG (2008) Response surface methodology: synthesis of inulooligosaccharides with an endoinulinase from Aspergillus niger. Enzyme Microb Technol 43:363–368Google Scholar
  39. Mutanda T, Wilhelmi B, Whiteley CG (2009) Controlled production of fructose by an exoinulinase from Aspergillus ficuum. Appl Biochem Biotechnol 159:65–77PubMedGoogle Scholar
  40. Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412PubMedPubMedCentralGoogle Scholar
  41. Nguyen QD, Rezessy-Szabo JM, Czukor B, Hoschke A (2011) Continuous production of oligofructose syrup from Jerusalem artichoke juice by immobilized endo-inulinase. Proc Biochem 46:298–303Google Scholar
  42. Ohta K, Akimoto H, Matsuda S, Toshimitsu D, Nakamura T (1998) Molecular cloning and sequence analysis of two endoinulinase genes from Aspergillus niger. Biosci Biotechnol Biochem 62:1731–1738PubMedGoogle Scholar
  43. Papanikolaou S, Aggelis G (2003) Selective uptake of fatty acids by the yeast Yarrowia lipolytica. Europian J Lipid Sci Technol 105:651–655Google Scholar
  44. Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnoly 58:308–312Google Scholar
  45. Park S, Jeong HY, Kim HS, Yang MS, Chae KS (2001) Enhanced production of Aspergillus ficuum endoinulinase in Saccharomyces cerevisiae by using the SUC2-deletion mutation. Enzy Microb Technol 29:107–110Google Scholar
  46. Pessoni RAB, Braga MR, Figueiredo-Ribeiro R de C (2007) Purification and properties of exo-inulinases from Penicillium janczewskii growing on distinct carbon sources. Mycologia, 99:493–503PubMedGoogle Scholar
  47. Rawat HK, Ganaie MA Kango N (2015a) Production of inulinase, fructosyltransferase and sucrase from fungi on low-value inulin-rich substrates and their use in generation of fructose and fructooligosaccharides. Antony van Leeuwenhoek 107: 799–811PubMedGoogle Scholar
  48. Rawat HK, Jain SC Kango N (2015b) Production and properties of inulinase from Penicillium sp. NFCC 2768 grown on inulin containing vegetal infusions. Biocat Biotrans 33:61–68Google Scholar
  49. Rawat HK, Soni H, Triechel H, Kango N (2016) Biotechnological potential of microbial inulinases: recent perspective. Crit Rev Food Sci Nutri. DOI: https://doi.org/10.1080/10408398.2016.1147419 (Online issue)
  50. Sheng J, Chi Z, Gong F, Li J (2008) Purification and characterization of extracellular inulinase from a marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the purified inulinase. Appl Biochem Biotechnol 144:111–121PubMedGoogle Scholar
  51. Singh RS, Singh RP, Kennedy JF (2016) Recent insights in enzymatic synthesis of fructooligosaccharides from inulin. Int J Bio Macromol.  https://doi.org/10.1016/j.ijbiomac.2016.01.026CrossRefGoogle Scholar
  52. Songpim M, Vaithanomsat P, Vanichsriratana W, Sirisansaneeyakul S (2011) Enhancement of inulinase and invertase production from a newly isolated Candida guilliermondii TISTR 5844. Kasetsart J 45:675–685Google Scholar
  53. Treichel H, Mazutti MA, Maugeri F, Rodrigues MI (2009) Use of a sequential strategy of experimental design to optimize the inulinase production in a batch bioreactor. J Ind Microbiol Biotechnol 36:895–900PubMedGoogle Scholar
  54. Trivedi S, Divecha J, Shah A (2012) Optimization of inulinase production by newly isolated Aspergillus tubingensis CR16 using low cost substrates. Carb Pol 90:483–490Google Scholar
  55. Trytek M, Fiedurek J, Podkoscielna B, Gawdzik B, Skowronek M (2015) An efficient method for the immobilization of inulinase using new types of polymers containing epoxy groups. J Indus Microbiol Biotechnol 42:985–996Google Scholar
  56. Vijayaraghavan K, Yamini D, Ambika V, Sowdamini NS (2009) Trends in inulinase production- a review. Crit Rev Biotechnol 29:67–77PubMedGoogle Scholar
  57. Waleckx E, Mateos-Diaz JC, Gschaedler A, Colonna-Ceccaldi B, Brin N, Garcia-Quezada G, Villanueva-Rodriguez S, Monsan P (2011) Use of inulinases to improve fermentable carbohydrate recovery during tequila production. Food Chem 124:1533–1542Google Scholar
  58. Wang J, Teng D, Yao Y, Yang Y, Zhang F (2004) Expression of Aspergillus niger 9891 endoinulinase in Pichia pastoris. High Technol Lett 10:52–56Google Scholar
  59. Wang L, Huang Y, Long X, Meng X, Liu Z (2011) Cloning of exoinulinase gene from Penicillium janthinellum strain B01 and its high-level expression in Pichia pastoris. J Appl Microbiol 111:1371–1380PubMedGoogle Scholar
  60. Wang GY, Chi Z, Song B, Wang ZP, Chi ZM (2012) High level lipid production by a novel inulinase-producing yeast Pichia guilliermondii Pcla22. Bioresour Technol 124:77–82PubMedGoogle Scholar
  61. Wang ZP, Fu WJ, Xu HM, Chi ZM (2014) Direct conversion of inulin into cell lipid by an inulinase-producing yeast Rhodosporidium toruloides 2F5. Bioresour Technol 161:131–136PubMedGoogle Scholar
  62. Yu X, Guo N, Chi Z, Gong F, Sheng J, Chi Z (2009) Inulinase overproduction by a mutant of the marine yeast Pichia guilliermondii using surface response methodology and inulin hydrolysis. Biochem Eng J 43:266–271Google Scholar
  63. Yu J, Jiang J, Fang Z, Li Y, Lv H, Liu J (2010) Enhanced expression of heterologous inulinase in Kluyveromyces lactis by disruption of hap1 gene. Biotechnol Lett 32:507–512PubMedGoogle Scholar
  64. Yu J, Jiang J, Ji W, Li Y, Liu J (2011) Glucose-free fructose production from Jerusalem artichoke using a recombinant inulinasesecreting Saccharomyces cerevisiae strain. Biotechnol Lett 33:147–152PubMedGoogle Scholar
  65. Yuan W, Bai F (2008) Optimization of medium and process parameters for the production of inulinase from Kluyveromyces marxianus Y1. J Biotechnol 136:290–344Google Scholar
  66. Yuan WJ, Chang BL, Ren JG, Liu JP, Bai FW, Li YY (2012) Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions. J Appl Microbiol 112:38–44PubMedGoogle Scholar
  67. Yuan B, Wang SA, Li FL (2013) Improved ethanol fermentation by heterologous endoinulinase and inherent invertase from inulin by Saccharomyces cerevisiae. Bioresour Technol 139:402–405PubMedGoogle Scholar
  68. Zhang GQ, Cui FM, Yang XQ, Qian SJ (2004) Purification and properties of endoinulinase from Chaetomium sp. Wei Sheng Wu Xue Bao 44:785–788PubMedGoogle Scholar
  69. Zhang T, Gong F, Chi Z, Liu G, Chi Z, Sheng J, Li J, Wang X (2009) Cloning and characterization of the inulinase gene from a marine yeast Pichia guilliermondii and its expression in Pichia pastoris. Antonie Van Leeuwenhoek 95:13–22PubMedGoogle Scholar
  70. Zhang T, Chi Z, Chi Z, Parrou JL, Gong F (2010) Expression of the inulinase gene from the marine-derived Pichia guilliermondii in Saccharomyces sp. W0 and ethanol production from inulin. Micro Biotechnol 3:576–582Google Scholar
  71. Zhang S, Yang F, Wang Q, Hua Y, Zhao ZK (2012) High-level secretory expression and characterization of the recombinant Kluyveromyces marxianus inulinase. Proc Biochem 47:151–155Google Scholar
  72. Zhao CH, Zhang T, Li M, Chi ZM (2010a) Single cell oil production from hydrolysates of inulin and extracts of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Proc Biochem 45:1121–1126Google Scholar
  73. Zhao CH, Cui W, Liu XY, Chi ZM, Madzak C (2010b) Expression of inulinase gene in the oleaginous yeast Yarrrowia lipolytica and single cell oil production from inulin containing materials. Metabol Eng 12:510–517PubMedGoogle Scholar
  74. Zhao CH, Chi Z, Zhang F, Guo FJ, Li M, Song WB, Chi ZM (2011) Direct conversion of inulin and extract of tubers of Jerusalem artichoke into single cell oil by co-cultures of Rhodotorula mucilaginosa TJY15a and immobilized inulinase-producing yeast cells. Bioresour Technol 102:6128–6133PubMedGoogle Scholar
  75. Zhou HX, Xin FH, Chi Z, Liu GL, Chi ZM (2014) Inulinase production by the yeast Kluyveromyces marxianus with the disrupted MIG1 gene and the over-expressed inulinase gene. Proc Biochem 49:1867–1874Google Scholar
  76. Zhou JP, Peng M, Zhang R, Li J, Tang X, Xu B, Ding J, Gao Y, Ren J, Huang Z (2015) Characterization of Sphingomonas sp. JB13 Exo-inulinase: a novel detergent, salt and protease-tolerant exo-inulinase. Extremophiles 19:383–393PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Hemant Kumar Rawat
    • 1
  • Hemant Soni
    • 1
  • Naveen Kango
    • 1
    Email author
  1. 1.Department of MicrobiologyDr. Harisingh Gour VishwavidyalayaSagarIndia

Personalised recommendations