Advertisement

Yeast Genome Sequencing: Basic Biology, Human Biology, and Biotechnology

  • Krishna Kant SharmaEmail author
Chapter
  • 811 Downloads

Abstract

Whole-genome sequencing of Saccharomyces cerevisiae is one of the milestones of genome research which complemented the understanding in basic biology and expanded the field of yeast biotechnology. It was the first fungus as well as first eukaryote used for reverse genetic experiments, which created consensus among research community to sequence the whole genome, followed by the creation of species-specific database, thus further sustaining and strengthening the status of model organism. Thereafter, the successive completion of genome sequencing of fission yeast, i.e., Schizosaccharomyces pombe and Neurospora crassa, a genetic model, created a revolution in the genome biology of non-filamentous fungi. Further, in very less time, a significant number of yeast genomes have been sequenced, annotated, and released in public domain. Genome-sequencing program provides enormous data on genes, proteins, and metabolic pathways within the fungal kingdom, thereby helping in solving the long awaited problems of the medical science, ecological science, bioenergy, and several fermentation and enzyme-based biotech industries. Interestingly, yeast genomics have great potential in understanding human health, developing novel drugs, and harvesting stored energy from lignocellulosic substrate. With the significant rise in sequenced yeast genomes, the knowledge of genes encoding proteins, antibiotics, enzymes, metabolites, and their pathways has increased exponentially. Till date, over hundreds of genome sequences of several strains of domesticated and wild yeast are available in public domain; however, not a single review inclusively on the basic and applied aspects of yeast genome has appeared. This chapter is an attempt to review the significance of yeast genome-sequencing information in basic biology and biotechnology.

Keywords

Yeast Saccharomyces Biotechnology Genome sequencing Next-generation sequencing Database 

Notes

Acknowledgements

I sincerely acknowledge Maharshi Dayanand University, Rohtak, for providing basic infrastructure facilities. Financial support to the laboratory from Council of Scientific and Industrial Research, New Delhi, and Department of Science and Technology (DST-SERB), New Delhi, during the writing of this chapter is also acknowledged.

References

  1. Almeida AJ, Matute DR, Carmona JA, Martins M, Torres I, McEwen JG, Restrepo A, Leão C, Ludovico P, Rodrigues F (2007) Genome size and ploidy of Paracoccidioides brasiliensis reveals a haploid DNA content: flow cytometry and GP43 sequence analysis. Fungal Genet Biol 44:25–31PubMedGoogle Scholar
  2. Annaluru N, Muller H, Mitchell LA, Ramalingam S, Stracquadanio G, Richardson SM, Dymond JS, Kuang Z, Scheifele LZ, Cooper EM, Cai Y, Zeller K, Agmon N, Han JS, Hadjithomas M, Tullman J, Caravelli K, Cirelli K, Guo Z, London V, Yeluru A, Murugan S, Kandavelou K, Agier N, Fischer G, Yang K, Martin JA, Bilgel M, Bohutski P, Boulier KM, Capaldo BJ, Chang J, Charoen K, Choi WJ, Deng P, DiCarlo JE, Doong J, Dunn J, Feinberg JI, Fernandez C, Floria CE, Gladowski D, Hadidi P, Ishizuka I, Jabbari J, Lau CY, Lee PA, Li S, Lin D, Linder ME, Ling J, Liu J, Liu J, London M, Ma H, Mao J, McDade JE, McMillan A, Moore AM, Oh WC, Ouyang Y, Patel R, Paul M, Paulsen LC, Qiu J, Rhee A, Rubashkin MG, Soh IY, Sotuyo NE, Srinivas V, Suarez A, Wong A, Wong R, Xie WR, Xu Y, Yu AT, Koszul R, Bader JS, Boeke JD, Chandrasegaran S (2014) Total synthesis of a functional designer eukaryotic chromosome. Science 344:55–58PubMedPubMedCentralGoogle Scholar
  3. Blandin G, Llorente B, Malpertuy A, Wincker P, Artiguenave F, Dujon B (2000) Genomic exploration of the Hemiascomycetous yeasts: 13. Pichia angusta, FEBS Letters 487:76–81PubMedGoogle Scholar
  4. Böer E, Breuer FS, Weniger M, Denter S, Piontek M, Kunze G (2011) Large-scale production of tannase using the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 92:105–114PubMedGoogle Scholar
  5. Böer E, Schröter A, Bode R, Piontek M, Kunze G (2009) Characterization and expression analysis of a gene cluster for nitrate assimilation from the yeast Arxula adeninivorans. Yeast 26(2):83–93PubMedGoogle Scholar
  6. Bonjean B, Guillaume LD (2003) Yeasts in bread and baking products. In: Boekhout T, Robert V (eds) Yeasts in food -beneficial and detrimental aspects. Behr’s Verlag, Hamburg, pp 289–307Google Scholar
  7. Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 7:e1001287PubMedPubMedCentralGoogle Scholar
  8. Breitkreutz B-J, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, Oughtred R, Lackner DH, Bähler J, Wood V, Dolinski K, Tyers M (2008) The BioGRID interaction database: 2008 update. Nucleic Acids Res 36:D637–D640PubMedGoogle Scholar
  9. Cai J, Zhao R, Jiang H, Wang W (2008) De Novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics 179:487–496PubMedPubMedCentralGoogle Scholar
  10. Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G, Roe T, Schroeder M, Weng S, Botstein D (1998) SGD: Saccharomyces genome database. Nucleic Acids Res 26:73–79PubMedPubMedCentralGoogle Scholar
  11. Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC, Karra K, Krieger CJ, Miyasato SR, Nash RS, Park J, Skrzypek MS, Simison M, Weng S, Wong ED (2012) Saccharomyces genome database: the genomics resource of budding yeast. Nucleic Acids Res 40:D700–D705PubMedGoogle Scholar
  12. Christie KR, Weng S, Balakrishnan R, Costanzo MC, Dolinski K, Dwight SS, Engel SR, Feierbach B, Fisk DG, Hirschman JE, Hong EL, Issel-Tarver L, Nash R, Sethuraman A, Starr B, Theesfeld CL, Andrada R, Binkley G, Dong Q, Lane C, Schroeder M, Botstein D, Cherry JM (2004) Saccharomyces genome database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res 32:D311–D314PubMedPubMedCentralGoogle Scholar
  13. Cowen LE, Anderson JB, Kohn LM (2002) Evolution of drug resistance in Candida albicans. Ann Rev Microbiol 56:139–165Google Scholar
  14. Cregg JM, Cereghino JL, Shi J, Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52PubMedGoogle Scholar
  15. De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouzé P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27(6):561–566PubMedGoogle Scholar
  16. Dupree JC, Vanderwalt JP (1983) Fermentation of xylose to ethanol by a strain of Candida shehatae. Biotech Lett 5:357–362Google Scholar
  17. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure J, Fields S, Blau CA, Noble WS (2010) A three-dimensional model of the yeast genome. Nature 465(20):363–367PubMedPubMedCentralGoogle Scholar
  18. Engel SR, Balakrishnan R, Binkley G, Christie KR, Costanzo MC, Dwight SS, Fisk DG, Hirschman JE, Hitz BC, Hong EL, Krieger CJ, Livstone MS, Miyasato SR, Nash R, Oughtred R, Park J, Skrzypek MS, Weng S, Wong ED, Dolinski K, Botstein D, Cherry JM (2010) Saccharomyces genome database provides mutant phenotype data. Nucleic Acids Res 38:D433–D436PubMedGoogle Scholar
  19. Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM (2014) The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 4:389–398PubMedGoogle Scholar
  20. Engel SR, Cherry JM (2013) The new modern era of yeast genomics: community sequencing and the resulting annotation of multiple Saccharomyces cerevisiae strains at the Saccharomyces genome database. Database.  https://doi.org/10.1093/database/bat012CrossRefPubMedPubMedCentralGoogle Scholar
  21. Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641.  https://doi.org/10.1038/msb.2012.66CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fidel PL, Vazquez JA, Sobel JD (1999) Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev 12:80–96PubMedPubMedCentralGoogle Scholar
  23. Gacek A, Strauss J (2012) The chromatin code of fungal secondary metabolite gene clusters. Appl Microbiol Biotechnol 95(6):1389–1404PubMedPubMedCentralGoogle Scholar
  24. Galagan JE, Henn MR, Ma L-J, Cuomo CA, Birren B (2005) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15:1620–1631PubMedGoogle Scholar
  25. Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH (2010) Cellodextrin transport in yeast for improved biofuel production. Science 330:84–86PubMedGoogle Scholar
  26. Gattiker A, Rischatsch R, Demougin P, Voegeli S, Dietrich FS, Philippsen P, Primig M (2007) Ashbya genome database 3.0: a cross-species genome and transcriptome browser for yeast biologists. BMC Genom 8:9Google Scholar
  27. Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica—a comparison. FEMS Yeast Res 5:1079–1096PubMedGoogle Scholar
  28. Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison CA (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA 105:20404–20409PubMedGoogle Scholar
  29. Gietz D, St. Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425PubMedPubMedCentralGoogle Scholar
  30. Giersberg M, Degelmann A, Bode R, Piontek M, Kunze G (2012) Production of a thermostable alcohol dehydrogenase from Rhodococcus ruber in three different yeast species using the Xplor(R)2 transformation/expression platform. J Ind Microbiol Biotechnol 39:1385–1396PubMedGoogle Scholar
  31. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:563–567Google Scholar
  32. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704PubMedGoogle Scholar
  33. Güldener U, Münsterkötter M, Kastenmüller G, Strack N, van Helden J, Lemer C, Richelles J, Wodak SJ, García-Martínez J, Pérez-Ortín JE, Michael H, Kaps A, Talla E, Dujon B, André B, Souciet JL, De Montigny J, Bon E, Gaillardin C, Mewes HW (2005) CYGD: the comprehensive yeast genome database. Nucleic Acids Res 33(1):D364–D368PubMedGoogle Scholar
  34. Haas BJ, Zeng Q, Pearson MD, Cuomo CA, Wortman JR (2011) Approaches to fungal genome annotation. Mycology 2:118–141PubMedPubMedCentralGoogle Scholar
  35. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M-F, Liden G, Zacchi G (2006) Bio-ethanol: the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556PubMedGoogle Scholar
  36. Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv biochem eng biotechnol 108:147–177PubMedGoogle Scholar
  37. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443PubMedGoogle Scholar
  38. Haslett ND, Rawson FJ, Barriere F, Kunze G, Pasco N, Gooneratne R, Baronian KH (2011) Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst. Biosens Bioelectron.  https://doi.org/10.1016/j.bios.2011.02.011CrossRefPubMedGoogle Scholar
  39. Hahn T, Tag K, Riedel K, Uhlig S, Baronian K, Gellissen G, Kunze G (2006) A novel estrogen sensor based on recombinant Arxula adeninivorans cells. Biosens Bioelectron 21:2078–2085PubMedGoogle Scholar
  40. Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75:1929–1933PubMedGoogle Scholar
  41. Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425(16):686–691PubMedGoogle Scholar
  42. Jacobs PP, Geysens S, Vervecken W, Contreras R, Callewaert N (2009) Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nature Protocol 4:58–70Google Scholar
  43. Jankowska DA, Trautwein-Schult A, Cordes A, Hoferichter P, Klein C, Bode R, Baronian K, Kunze G (2013) Arxula adeninivorans xanthine oxidoreductase and its application in the production of food with low purine content. J Appl Microbiol 115:796–807PubMedGoogle Scholar
  44. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326PubMedGoogle Scholar
  45. Jones DT (1999) GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol 287:797–815PubMedGoogle Scholar
  46. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101:7329–7334PubMedGoogle Scholar
  47. Küberl A, Schneider J, Thallinger GG, Anderl I, Wibberg D, Hajek T, Jaenicke S, Brinkrolf K, Goesmann A, Szczepanowski R, Pühler A, Schwab H, Glieder A, Pichler H (2011) High-quality genome sequence of Pichia pastoris CBS7435. J Biotechnol 154(4):312–320PubMedGoogle Scholar
  48. Kurtzman CP, Robnett CJ (2010) Systematics of methanol assimilating yeasts and neighboring taxa from multigene sequence analysis and the proposal of Peterozyma gen. nov., a new member of the Saccharomycetales. FEMS Yeast Res 10:353–361PubMedGoogle Scholar
  49. Kunze G, Gaillardin C, Czernicka M, Durrens P, Martin T, Böer E, Gabaldón T, Cruz JA, Talla E, Marck C, Goffeau A, Barbe V, Baret P, Baronian K, Beier S, Bleykasten C, Bode R, Casaregola S, Despons L, Fairhead C, Giersberg M, Gierski PP, Hähnel U, Hartmann A, Jankowska D, Jubin C, Jung P, Lafontaine I, Leh-Louis V, Lemaire M, Marcet-Houben M, Mascher M, Morel G, Richard GF, Riechen J, Sacerdot C, Sarkar A, Savel G, Schacherer J, Sherman DJ, Stein N, Straub ML, Thierry A, Trautwein-Schult A, Vacherie B, Westhof E, Worch S, Dujon B, Souciet JL, Wincker P, Scholz U, Neuvéglise C (2014) The complete genome of Blastobotrys (Arxula) adeninivorans LS3—a yeast of biotechnological interest. Biotechnol Biofuels 7:66.  https://doi.org/10.1186/1754-6834-7-66CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kaiser C, Uhlig S, Torsten Gerlach T, Körner M, Simon K, Kunath K, Florschütz K, Baronian K, Kunze G (2010) Evaluation and validation of a novel Arxula adeninivorans estrogen screen (nAES) assay and its application in analysis of wastewater, seawater, brackish water and urine. Sci Total Environ 408(23):6017–6026PubMedGoogle Scholar
  51. Li L, Redding S, Dongari-Bagtzoglou A (2007) Candida glabrata: an emerging oral opportunistic pathogen. J Dent Res 86:204–215PubMedGoogle Scholar
  52. Libkind D, Hittinger CT, Valerio E, Gonçalves C, Dover J, Johnston M, Gonçalves P, Sampaio JP (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci USA 108:14539–14544PubMedGoogle Scholar
  53. Linde J, Duggan S, Weber M (2015) Defining the transcriptomic landscape of Candida glabrata by RNA-Seq. Nucleic Acids Res 43(3):1392–1406PubMedPubMedCentralGoogle Scholar
  54. Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O’Kelly MJ, van Oudenaarden A, Barton DB, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ (2009) Population genomics of domestic and wild yeasts. Nature 458(7236):337–341PubMedPubMedCentralGoogle Scholar
  55. Loftus BL, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D, Vamathevan J, Miranda M, Anderson IJ, Fraser JA, Allen JE, Bosdet IE, Brent MR, Chiu R, Doering TL, Donlin MJ, D’Souza CA, Fox DS, Grinberg V, Fu J, Fukushima M, Haas BJ, Huang JC, Janbon G, Jones SJ, Koo HL, Krzywinski MI, Kwon-Chung JK, Lengeler KB, Maiti R, Marra MA, Marra RE, Mathewson CA, Mitchell TG, Pertea M, Riggs FR, Salzberg SL, Schein JE, Shvartsbeyn A, Shin H, Shumway M, Specht CA, Suh BB, Tenney A, Utterback TR, Wickes BL, Wortman JR, Wye NH, Kronstad JW, Lodge JK, Heitman J, Davis RW, Fraser CM, Hyman RW (2005) The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307:1321–1324PubMedPubMedCentralGoogle Scholar
  56. Martinez DA, Oliver BG, Gräser Y, Goldberg JM, Li W, Martinez-Rossi NM, Monod M, Shelest E, Barton RC, Birch E, Brakhage AA, Chen Z, Gurr SJ, Heiman D, Heitman J, Kosti I, Rossi A, Saif S, Samalova M, Saunders CW, Shea T, Summerbell RC, Xu J, Young S, Zeng Q, Birren BW, Cuomo CA, White TC (2012) Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. mBio 3:e00259-12Google Scholar
  57. McDowall MD, Harris MA, Lock A, Rutherford K, Staines DM, Bähler J, Kersey PJ, Oliver SG, Wood V (2015) PomBase 2015: updates to the fission yeast database. Nucleic Acids Res 43:D656–D661PubMedGoogle Scholar
  58. McGary KL, Slot JC, Rokas A (2013) Physical linkage of metabolic genes in fungi is an adaptation against the accumulation of toxic intermediate compounds. Proc Natl Acad Sci USA 110(28):11481–11486PubMedGoogle Scholar
  59. Mewes HW, Frishman D, Gruber C, Geier B, Haase D, Kaps A, Lemcke K, Mannhaupt G, Pfeiffer F, Schüller C, Stocker S, Weil B (2000) MIPS: a database for genomes and protein sequences. Nucleic Acids Res 28:37–40PubMedPubMedCentralGoogle Scholar
  60. Mewes HW, Ruepp A, Theis F, Rattei T, Walter W, Frishman D, Suhre K, Spannag M, Mayer KFX, Stümpflen V, Antonov A (2010) MIPS: curated databases and comprehensive secondary data resources in 2010. Nucleic Acids Res 39:D220–D224PubMedPubMedCentralGoogle Scholar
  61. Moore D, Meškauskas A (2006) A comprehensive comparative analysis of the occurrence of developmental sequences in fungal, plant and animal genomes. Mycol Res 110:251–256PubMedGoogle Scholar
  62. Morales L, Noel B, Porcel B, Marcet-Houben M, Hullo M-F, Sacerdot C, Tekaia F, Leh-Louis V, Despons L, Khanna V, Jean-Marc Aury J-M, Barbe V, Couloux A, Labadie K, Pelletier E, Souciet J-L, Boekhout T, Gabaldon T, Wincker P, Dujon B (2013) Complete DNA sequence of Kuraishia capsulata illustrates novel genomic features among budding yeasts (Saccharomycotina). Genome Biol Evol 5(12):2524–2539PubMedPubMedCentralGoogle Scholar
  63. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349PubMedPubMedCentralGoogle Scholar
  64. Nguyen HV, Gaillardin C (2005) Evolutionary relationships between the former species Saccharomyces uvarum and the hybrids Saccharomyces bayanus and Saccharomyces pastorianus; reinstatement of Saccharomyces uvarum (Beijerinck) as a distinct species. FEMS Yeast Res 5:471–483PubMedGoogle Scholar
  65. Nguyen H-V, Legras J-L, Neuvéglise C, Gaillardin C (2011) Deciphering the hybridisation history leading to the lager lineage based on the mosaic genomes of Saccharomyces bayanus strains NBRC1948 and CBS380T. PLOS One 6:e25821PubMedPubMedCentralGoogle Scholar
  66. Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, Smirnova T, Grigoriev IV, Dubchak I (2014) The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 42:D26–D31PubMedGoogle Scholar
  67. Ormerod KL, Morrow CA, Chow EWL, Lee IR, Arras SDM, Schirra HJ, Cox GM, Fries BC, Fraser JA (2013) Comparative genomics of serial isolates of Cryptococcus neoformans reveals gene associated with carbon utilization and virulence. G3 Genes Genomes Genetics 3:675–686PubMedPubMedCentralGoogle Scholar
  68. Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64(1):34–50PubMedPubMedCentralGoogle Scholar
  69. Pagani I, Liolios K, Jansson J, Chen IM, Smirnova T, Nosrat B, Markowitz VM, Kyrpides NC (2012) The Genomes OnLine Database (GOLD) v. 4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 40:D571–D579PubMedGoogle Scholar
  70. Pain A, Hertz-Fowler C (2008) Genomic adaptation: a fungal perspective. Nat Rev Microbiol 6:572–573PubMedGoogle Scholar
  71. Palmer JM, Keller NP (2010) Secondary metabolism in fungi: does chromosomal location matter. Curr Opin Microbiol 13(4):431–436PubMedPubMedCentralGoogle Scholar
  72. Park J, Park B, Jung K, Jang S, Yu K, Choi J, Kong S, Kim S, Kim H, Kim JF, Blair JE, Lee K, Kang S, Lee Y-H (2008) CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Res 36:D562PubMedGoogle Scholar
  73. Passoth V, Fredlund E, Druvefors UA, Schnürer J (2006) Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Res 6:3–13PubMedGoogle Scholar
  74. Passoth V, Olstorpe M, Schnürer J (2011) Past, present and future research directions with Pichia anomala. Antonie Van Leeuwenhoek 99:121–125PubMedGoogle Scholar
  75. Rauter M, Schwarz M, Becker K, Baronian K, Bode R, Kunze G, Vorbrodt HM (2013) Synthesis of benzylβ-d-galactopyranoside by transgalactosylation using aβ-galactosidase produced by the over expression of the Kluyveromyces lactis LAC4 gene in Arxula adeninivorans. J Mol Catal B Enzym 97:319–327Google Scholar
  76. Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N, Wapinski I, Roy S, Lin MF, Heiman DI, Young SK, Furuya K, Guo Y, Pidoux A, Chen HM, Robbertse B, Goldberg JM, Aoki K, Bayne EH, Berlin AM, Desjardins CA, Dobbs E, Dukaj L, Fan L, FitzGerald MG, French C, Gujja S, Hansen K, Keifenheim D, Levin JZ, Mosher RA, Müller CA, Pfiffner J, Priest M, Russ C, Smialowska A, Swoboda P, Sykes SM, Vaughn M, Vengrova S, Yoder R, Zeng Q, Allshire R, Baulcombe D, Birren BW, Brown W, Ekwall K, Kellis M, Leatherwood J, Levin H, Margalit H, Martienssen R, Nieduszynski CA, Spatafora JW, Friedman N, Dalgaard JZ, Baumann P, Niki H, Regev A, Nusbaum C (2011) Comparative functional genomics of the fission yeasts. Science 332(6032):930–936PubMedPubMedCentralGoogle Scholar
  77. Scannell DR, Zill OA, Rokas A, Payen C, Dunham MJ, Eisen MB, Rine J, Johnston M, Hittinger CT (2011) The awesome power of yeast evolutionary genetics: new genome sequences and strain resources for the Saccharomyces sensu stricto genus. G3 Genes Genomes Genetics 1:11–25PubMedPubMedCentralGoogle Scholar
  78. Scazzocchio C (2014) Fungal biology in the post-genomic era. Fungal Biol Biotechnol 1:7PubMedPubMedCentralGoogle Scholar
  79. Schneider H, Wang PY, Maleszka CR (1981) Conversion of D-xylose into ethanol by yeast Pachysolen tannophilus. Biotech Lett 3:89–92Google Scholar
  80. Schneider J, Rupp O, Trost E, Jaenicke S, Passoth V, Goesmann A, Tauch A, Brinkrolf K (2012) Genome sequence of Wickerhamomyces anomalus DSM 6766 reveals genetic basis of biotechnologically important antimicrobial activities. FEMS Yeast Res 12:382–386PubMedGoogle Scholar
  81. Sharma KK (2015) Fungal genome sequencing: basic biology to biotechnology. Crit Rev Biotechnol.  https://doi.org/10.3109/07388551.2015.1015959CrossRefPubMedGoogle Scholar
  82. Siverio JM (2002) Assimilation of nitrate by yeasts. FEMS Microbiol Rev 26(3):277–284PubMedGoogle Scholar
  83. Skrzypek MS, Arnaud MB, Costanzo MC, Inglis DO, Shah P, Binkley G, Miyasato SR, Sherlock G (2010) New tools at the Candida Genome Database: biochemical pathways and full-text literature search. Nucleic Acids Res 38:D428–D432PubMedGoogle Scholar
  84. Slot JC, Rokas A (2010) Multiple GAL pathway gene clusters evolved independently and by different mechanisms in fungi. Proc Natl Acad Sci USA 107(22):10136–10141PubMedGoogle Scholar
  85. Smith DR, Quinlan AR, Peckham HE, Makowsky K, Tao W, Woolf B, Shen L, Donahue WF, Tusneem N, Stromberg MP, Stewart DA, Zhang L, Ranade SS, Warner JB, Lee CC, Coleman BE, Zhang Z, McLaughlin SF, Malek JA, Sorenson JM, Blanchard AP, Chapman J, Hillman D, Chen F, Rokhsar DS, McKernan KJ, Jeffries TW, Marth GT, Richardson PM (2008) Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome Res 18:1638–1642PubMedPubMedCentralGoogle Scholar
  86. Song G, Dickins BJA, Demeter J (2015) AGAPE (Automated Genome Analysis PipelinE) for Pan-genome analysis of Saccharomyces cerevisiae. PLOS One.  https://doi.org/10.1371/journal.pone.0120671CrossRefPubMedPubMedCentralGoogle Scholar
  87. Stajich JE, Harris T, Brunk BP et al (2012) FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res 40:D675–D681PubMedGoogle Scholar
  88. Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804PubMedGoogle Scholar
  89. Wartmann T, Kunze G (2003) Expression of heterologous genes in Arxula adeninivorans budding cells and mycelia. In: Wolf K, Breunig K, Barth G (eds) Non-conventional yeasts in genetics, biochemistry and biotechnology. Springer, Berlin-Heidelberg, pp 7–13Google Scholar
  90. Wenger JW, Schwartz K, Sherlock G (2010) Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet 6:e1000942PubMedPubMedCentralGoogle Scholar
  91. Wei W, McCusker JH, Hyman RW, Jones T, Ning Y, Cao Z, Gu Z, Bruno D, Miranda M, Nguyen M, Wilhelmy J, Komp C, Tamse R, Wang X, Jia P, Luedi P, Oefner PJ, David L, Dietrich FS, Li Y, Davis RW, Steinmetz LM (2007) Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci USA 104:12825–12830PubMedGoogle Scholar
  92. Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bähler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453(7199):1239–1243PubMedGoogle Scholar
  93. Wilkening S, Tekkedil MM, Lin G, Fritsch ES, Wei W, Gagneur J, Lazinski DW, Camilli A, Steinmetz LM (2013) Genotyping 1000 yeast strains by next-generation sequencing. BMC Genom 14:90Google Scholar
  94. Wohlbach D, Kuoc A, Sato TK, Potts KM, Salamov AA, Labutti KM, Sun H, Clum A, Pangilinan JL, Lindquist EA, Lucas S, Lapidus A, Jin M, Gunawan C, Balan V, Dale BE, Jeffries TW, Zinkel R, Barry KW, Grigoriev IV, Gasch AP (2011) Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proc Natl Acad Sci USA 108:13212–13217PubMedGoogle Scholar
  95. Wolfe KH (2006) Comparative genomics and genome evolution in yeasts. Philos Trans Royal Soc B Biological 361(1467):403–412Google Scholar
  96. Wong S, Wolfe KH (2005) Birth of a metabolic gene cluster in yeast by adaptive gene relocation. Nat Genet 37(7):777–782PubMedGoogle Scholar
  97. Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O’Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schäfer M, Müller-Auer S, Gabel C, Fuchs M, Düsterhöft A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dréano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sánchez M, del Rey F, Benito J, Domínguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415(6874):871–880PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Laboratory of Enzymology and Recombinant DNA Technology, Department of MicrobiologyMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations