Advertisement

Metallic Nanoparticles: Potential Antimicrobial and Therapeutic Agents

  • Pragati Jamdagni
  • Parveen Kaur Sidhu
  • Poonam Khatri
  • Kiran Nehra
  • J. S. Rana
Chapter

Abstract

Nanoscience deals with the structural and functional aspects of materials with a size range of 1–100 nm. Such small size range offers a high surface to volume ratio which in turn proves advantageous over macromolecules of similar chemical compositions. Contributing to their unique properties and biocompatibility with human cells is the possibility of their biogenic synthesis, which further makes them an attractive alternative option for use in human medicine. Nanostructures of various shapes, sizes, and configurations have been facing extensive investigation since the last few decades. Initially, nanoparticles were majorly researched for the inspection of their antimicrobial properties, but as the field expanded, it has further extended to uncovering their potential applications in therapeutics, drug delivery, and nanomedicine. The present chapter aims at discussing the potential of metallic nanoparticles as antimicrobial and therapeutic agents, the major focus being on the various proposed mechanisms used by nanoparticles for the inhibition of microbial cells and the various applications of nanoparticles in the field of therapeutics and drug discovery. Besides the potential benefits of nanoparticles, there is a mounting apprehension about the risk associated with their use on living beings and environment. There is a tremendous need to study their toxic effects before using them as routine therapeutic agents. Hence, the studies related to the toxic effects of nanoparticles on nontarget population which are essential for their implementation as therapeutic agents have also been reviewed.

References

  1. Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA (2010) Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396:578–583PubMedCrossRefGoogle Scholar
  2. Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM (2013) Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B: Biointerfaces 107:227–234PubMedCrossRefGoogle Scholar
  3. Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25:4383–4391PubMedCrossRefGoogle Scholar
  4. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7(6):753–763PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aust SD, Chignell CF, Bray TM, Kalyanaraman B, Mason RP (1993) Free radicals in toxicology. Toxicol Appl Pharm 120(2):168–178CrossRefGoogle Scholar
  7. Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482PubMedCrossRefGoogle Scholar
  8. Bansal P, Duhan JS, Gahlawat SK (2014) Biogenesis of nanoparticles. Afr J Biotechnol 13(28):2778–2785CrossRefGoogle Scholar
  9. Bera RK, Mandal SM, Raj CR (2014) Antimicrobial activity of fluorescent Ag nanoparticles. Lett Appl Microbiol 58:520–526PubMedCrossRefGoogle Scholar
  10. Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F (2012) Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interf Sci 170(1–2):2–27CrossRefGoogle Scholar
  11. Braun GB, Friman T, Pang H-B, Pallaoro A, de Mendoza TH, Willmore A-MA, Kotamraju VR, Mann AP, She Z-G, Sugahara KN, Reich NO, Teesalu T, Ruoslahti E (2014) Etchable plasmonic nanoparticle probes to image and quantify cellular internalization. Nat Mater 13(9):904–911PubMedPubMedCentralCrossRefGoogle Scholar
  12. Braydich-Stolle L, Hussain SM, Schlager J, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4):866–870PubMedCrossRefGoogle Scholar
  14. Brooker RJ (2011) Genetics: analysis and principles, 4th edn. McGraw-Hill Science, New York. ISBN 978-0-07-352528-0Google Scholar
  15. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71sPubMedCrossRefGoogle Scholar
  16. Canesi L, Ciacci C, Betti M, Fabbri R, Canonico B, Fantinati A, Marcomini A, Poiana G (2008) Immunotoxicity of carbon black nanoparticles to blue mussel hemocytes. Environ Int 34:1114–1118PubMedCrossRefGoogle Scholar
  17. Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ, Payne WG, Smith DJ, Robson MC (2007) Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J 4(2):114–122PubMedCrossRefGoogle Scholar
  18. Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29:487–496PubMedCrossRefGoogle Scholar
  19. Cho WS, Duffin R, Howie SE, Scotton CJ, Wallace WA, Macnee W, Bradley M, Megson IL, Donaldson K (2011) Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol 8:27–42PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33(7):2327–2333PubMedCrossRefGoogle Scholar
  21. Das SK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199PubMedCrossRefGoogle Scholar
  22. Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782PubMedCrossRefGoogle Scholar
  23. Deguchi J-O, Aikawa M, Tung C-H, Aikawa E, Kim D-E, Ntziachristos V, Weissleder R, Libby P (2006) Inflammation in atherosclerosis–visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114:55–62PubMedCrossRefGoogle Scholar
  24. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701PubMedCrossRefGoogle Scholar
  25. Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75:2973–2976PubMedPubMedCentralCrossRefGoogle Scholar
  26. Elias A, Tsourkas A (2009) Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hematol Am Soc Hematol Educ Program 2009:720–726Google Scholar
  27. Emerich DF, Thanos CG (2007) Targeted nanoparticle-based drug delivery and diagnosis. J Drug Target 15(3):163–183PubMedCrossRefGoogle Scholar
  28. Etrych T, Chytil P, Mrkvan T, Sırova, Rihova B, Ulbrich K (2008) Conjugates of doxorubicin with graft HPMA copolymers for passive tumor targeting. J Control Release 132(3):184–192PubMedCrossRefGoogle Scholar
  29. Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58:1456–1459PubMedCrossRefGoogle Scholar
  30. Felson DT, Anderson JJ, Meenan RF (1990) The comparative efficacy and toxicity of second-line drugs in rheumatoid arthritis. Arthritis Rheum 33:1449–1461PubMedCrossRefGoogle Scholar
  31. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668PubMedCrossRefGoogle Scholar
  32. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36Google Scholar
  33. Finney LA, O’Halloran TV (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300:931–936PubMedCrossRefGoogle Scholar
  34. Gerhardt LC, Jell GMR, Boccaccini AR (2007) Titanium dioxide (TiO2) nanoparticles filled poly (D, L lactic acid) (PDLLA) matrix composites for bone tissue engineering. J Mater Sci Mater Med 95:69–80Google Scholar
  35. Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margel S (2011) Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf A Physicochem Eng Aspect 374(1–3):1–8CrossRefGoogle Scholar
  36. Hanagata N, Zhuang F, Connolly S, Li J, Ogawa N, Xu M (2011) Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis. ASC Nano 5(12):9326–9338CrossRefGoogle Scholar
  37. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19(29):295103PubMedPubMedCentralCrossRefGoogle Scholar
  38. Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24(8):4140–4144PubMedCrossRefGoogle Scholar
  39. Huster D, Purnat TD, Burkhead LL, Ralle M, Fiehn O, Stuckert F, Olson NE, Teupser D, Lutsekno SJ (2007) High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease. J Biol Chem 282:8343–8355PubMedCrossRefGoogle Scholar
  40. Iavicoli I, Fontana L, Leso V, Bergamaschi A (2013) The effects of nanomaterials as endocrine disruptors. Int J Mol Sci 14:16732–16801PubMedPubMedCentralCrossRefGoogle Scholar
  41. Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P (2010) ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater Chem Phys 121(1–2):198–201CrossRefGoogle Scholar
  42. Jamdagni P, Khatri P, Rana JS (2016) Nanoparticles based DNA conjugates for detection of pathogenic microorganisms. Int Nano Lett.  https://doi.org/10.1007/s40089-015-0177-0
  43. Kahru A, Savolainen K (2010) Potential hazard of nanoparticles: from properties to biological and environmental effects. Toxicology 269(2–3):89–91PubMedCrossRefGoogle Scholar
  44. Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23(6):1116–1122PubMedCrossRefGoogle Scholar
  46. Kaur P, Thakur R, Kumar S, Dilbaghi N (2011) Interaction of ZnO nanoparticles with food borne pathogens Escherichia coli DH5α and Staphylococcus aureus 5021 & their bactericidal efficacy. AIP Conf Proc 1393:153–154CrossRefGoogle Scholar
  47. Kaur P, Thakur R, Chaudhury A (2012) An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Technol Res 1(6):83–86Google Scholar
  48. Kaur P, Chaudhury A, Thakur R (2013) Synthesis of chitosan-silver nanocomposites and their antibacterial activity. Int J Sci Eng Res 4(4):869Google Scholar
  49. Kaur P, Thakur R, Barnela M, Chopra M, Manuja A, Chaudhury A (2014) Synthesis, characterization and in vitro evaluation of cytotoxicity and antimicrobial activity of chitosan–metal nanocomposites. J Chem Technol Biotechnol.  https://doi.org/10.1002/jctb.4383
  50. Kaur P, Thakur R, Chaudhury A (2016) Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem Letters Rev 9(1):33–38CrossRefGoogle Scholar
  51. Kennedy DC, Lyn RK, Pezacki JP (2009) Cellular lipid metabolism is influenced by the coordination environment of copper. J Am Chem Soc 131:2444–2445PubMedCrossRefGoogle Scholar
  52. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine Nanotechnol Biol Med 3:95–101CrossRefGoogle Scholar
  53. Knaapen M, Borm PJA, Albrecht C, Schins RPF (2004) Inhaled particles and lung cancer, part A: mechanisms. Int J Cancer 109(6):799–809PubMedCrossRefGoogle Scholar
  54. Kolar M, Urbanek K, Latal T (2001) Antibiotic selective pressure and development of bacterial resistance. Int J Antimicrob Ag 17:357–363CrossRefGoogle Scholar
  55. Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458PubMedCrossRefGoogle Scholar
  56. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51(10):1872–1881PubMedCrossRefGoogle Scholar
  57. Lanone S, Rogerieux F, Geys F, Dupont A, Maillot-Marechal E, Boczkowski J, Lacroix G, Hoet P (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14–25PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lansdown ABG (2002) Silver I: its antibacterial properties and mechanism of action. J Wound Care 11:125–138PubMedCrossRefGoogle Scholar
  59. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602PubMedCrossRefGoogle Scholar
  60. Li J, Han T, Wei N, Du J, Zhao X (2009) Three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) photonic crystals modified electrodes for hydrogen peroxide biosensor. Biosens Bioelectron 25(4):773–777PubMedCrossRefGoogle Scholar
  61. Li CH, Shen CC, Cheng YW, Huang SH, Wu CC, Kao CC, Liao JW, Kang JJ (2012) Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 6:746–756PubMedCrossRefGoogle Scholar
  62. Lian T, Ho RJ (2001) Trends and developments in liposome drug delivery systems. J Pharm Sci 90:667–680PubMedCrossRefGoogle Scholar
  63. Lipovsky A, Nitzan Y, Gedanken A, Lubart R (2011) Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology 22(10):105101PubMedCrossRefGoogle Scholar
  64. Liu G, Mena P, Perry G, Smith MA (2009) Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer’s disease. Nanoneuroscience 1(1):42–55CrossRefGoogle Scholar
  65. Luo X, Matranga C, Tan S, Alba N, Cui XT (2011) Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials 32:6316–6323PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lushchak VI (2001) Oxidative stress and mechanisms of protection against it in bacteria. Biochemistry (Moscow) 66:476–489CrossRefGoogle Scholar
  67. Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69(7):4278–4281PubMedPubMedCentralCrossRefGoogle Scholar
  68. Maurer-Jones MA, Mousavi MPS, Chen LD, Bühlmann P, Haynes CL (2013) Characterization of silver ion dissolution from silver nanoparticles using fluorous-phase ion-selective electrodes and assessment of resultant toxicity to Shewanella oneidensis. Chem Sci 4:2564–2572CrossRefGoogle Scholar
  69. Mazooz G, Mehlman T, Lai TS, Greenberg CS, Dewhirst MW, Neeman M (2005) Development of magnetic resonance imaging contrast material for in vivo mapping of tissue transglutaminase activity. Cancer Res 65:1369–1375PubMedCrossRefGoogle Scholar
  70. Midander K, Cronholm P, Karlsson HL, Elihn K, Moller L, Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nanoand micrometer-sized copper and copper (II) oxide particles: a cross-disciplinary study. Small 5:389–399PubMedCrossRefGoogle Scholar
  71. Mirkin CA, Taton TA (2000) Semiconductors meet biology. Nature 40:626–627CrossRefGoogle Scholar
  72. Miyoshi N, Kume K, Tsutumi K, Fukunaga Y, Ito S, Imamura Y, Bibin AB (2011) Application of titanium dioxide (TiO2) nanoparticles in photodynamic therapy (PDT) of an experimental tumor. AIP Conf Proc 1415:21.  https://doi.org/10.1063/1.3667210 CrossRefGoogle Scholar
  73. Mnyusiwalla A, Daar AS, Singer PA (2003) ‘Mind the gap’: science and ethics in nanotechnology. Nanotechnology 14:R9–R13CrossRefGoogle Scholar
  74. Mody VV, Nounou MI, Bikram M (2009) Novel nanomedicine-based MRI contrast agents for gynecological malignancies. Adv Drug Deliv Rev 61:795–807PubMedCrossRefGoogle Scholar
  75. Morales MP, Bomati-Miguel O, de Alejo RP, Ruiz-Cabello J, Veintemillas-Verdaguer S, O’Grady K (2003) Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis. J Magn Magn Mater 266:102–109CrossRefGoogle Scholar
  76. Moreno-Garrido I, Pérez S, Blasco J (2015) Toxicity of silver and gold nanoparticles on marine microalga. Mar Environ Res 111:60–73PubMedCrossRefGoogle Scholar
  77. Morones JR, Elechiguerra JL, CamachoA HK, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353PubMedCrossRefGoogle Scholar
  78. Mukherjee P, Bhattacharya R, Bone N, Lee YK, Patra CR, Wang S, Lu L, Secreto C, Banerjee PC, Yaszemski MJ, Kay NE, Mukhopadhyay D (2007) Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. J Nanobiotechnol 5:4–16CrossRefGoogle Scholar
  79. Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y, Yagi K (2009) Silica nanoparticles as hepatotoxicants. Eur J Pharm Biopharm 72:496–501PubMedCrossRefGoogle Scholar
  80. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater 9:1–7CrossRefGoogle Scholar
  81. Panyala NR, Pena-Mendez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6:117–129Google Scholar
  82. Park J, Fong PM, Lu J, Russell KS, Booth CJ, Saltzman WM, Fahmy TM (2009) PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine 5:410–418PubMedPubMedCentralCrossRefGoogle Scholar
  83. Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine 3:311–321PubMedPubMedCentralGoogle Scholar
  84. Prokop A, Davidson JM (2008) Nanovehicular intracellular delivery systems. J Pharm Sci 97:3518–3590PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rai RV, Bai JA (2011) Nanoparticles and their potential application as antimicrobials. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Spain, pp 197–209Google Scholar
  86. Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54(2):177–182PubMedCrossRefGoogle Scholar
  87. Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 86(5):521–522CrossRefGoogle Scholar
  88. Shah MA, Tokeer A (2010) Principles of nanoscience and nanotechnology. Narosa Publishing House, New DelhiGoogle Scholar
  89. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96CrossRefGoogle Scholar
  90. Sharma TK, Chopra A, Sapra M, Kumawat D, Patil SD, Pathania R, Navani NK (2012) Green synthesis and antimicrobial potential of silver nanoparticles. Int J Green Nanotechnol 4(1):1–16CrossRefGoogle Scholar
  91. Shenderova OA, Zhirnov VV, Brenner DW (2002) Carbon nanostructures. Crit Rev Solid State Mater Sci 27(3–4):227–356CrossRefGoogle Scholar
  92. Shin SH, Ye MK, Kim HS, Kang HS (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7:1813–1818PubMedCrossRefGoogle Scholar
  93. Siegel RW (1993) Nanostructured materials- mind over matter. Nanostruct Mater 3:1–18CrossRefGoogle Scholar
  94. Singleton P (2004) Bacteria, in biology, biotechnology and medicine, 6th edn. Wiley, West SussexGoogle Scholar
  95. Sinha R, Karan R, Sinha A, Khare SK (2011) Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102:1516–1520PubMedCrossRefGoogle Scholar
  96. Smalley RE (1999) U.S. Congress Testimony, p2. http://www.sc.doe.gov//bes/Senate/smalley.pdfGoogle Scholar
  97. Sondi I, Sondi BS (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275(1):177–182PubMedCrossRefPubMedCentralGoogle Scholar
  98. Sortino S (2012) Photoactivated nanomaterials for biomedical release applications. J Mater Chem 22:301–318CrossRefGoogle Scholar
  99. Syed MA (2014) Advances in nanodiagnostic techniques for microbial agents. Biosens Bioelectron 51:391–400PubMedCrossRefGoogle Scholar
  100. Tanaka T, Shiramoto S, Miyashita M, Fujishima Y, Kaneo Y (2004) Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). Int J Pharm 277(1–2):39–61PubMedCrossRefGoogle Scholar
  101. Taniguchi N (1974) On the basic concept of nanotechnology. In: Proceedings of the international conference production engineering, Tokyo, Part II, Japan Society of Precision Engineering, pp 18–23Google Scholar
  102. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279(6):L1005–L1028CrossRefPubMedGoogle Scholar
  103. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156PubMedCrossRefGoogle Scholar
  104. Tian L, Lin B, Wu L, Li K, Liu H, Yan J, Liu X, Xi Z (2015) Neurotoxicity induced by zinc oxide nanoparticles: age-related differences and interaction. Sci Rep 5:16117PubMedPubMedCentralCrossRefGoogle Scholar
  105. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–159PubMedCrossRefGoogle Scholar
  106. Torchilin V (2008) Multifunctional pharmaceutical nanocarriers. Springer, New YorkCrossRefGoogle Scholar
  107. Uddin MJ, Mondal D, Morris CA, Lopez T, Diebold U, Gonzalez RD (2011) An in vitro controlled release study of valproic acid encapsulated in a titania ceramic matrix. Appl Surf Sci 257:7920–7927CrossRefGoogle Scholar
  108. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress induced cancer. Chem Biol Interact 160(1):1–40PubMedCrossRefGoogle Scholar
  109. Vandebriel RJ, De Jong WH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71PubMedPubMedCentralCrossRefGoogle Scholar
  110. Verma S, Gokhale R, Burgess DJ (2009) A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm 380(1–2):216–222PubMedCrossRefGoogle Scholar
  111. Vollath D (2008) Nanomaterials: an introduction to synthesis, properties and application. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–20Google Scholar
  112. Wagner V, Dullaart A, Bock A-K, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217PubMedCrossRefGoogle Scholar
  113. Walker B, Barrett S, Polasky S, Galaz V, Folke C, Engström G, Ackerman F, Arrow K, Carpenter S, Chopra K, Daily G, Ehrlich P, Hughes T, Kautsky N, Levin S, Mäler KG, Shogren J, Vincent J, Xepapadeas T, de Zeeuw A (2009) Environment. Looming global-scale failures and missing institutions. Science 325:1345–1346CrossRefGoogle Scholar
  114. Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR, Farokhzad OC (2008a) Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 8(8):1063–1070PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M, Ouyang H, Shi J, Zhang F, Zhao Y, Chai Z, Wang H, Wang J (2008b) Acute toxicological impact of nano and submicro scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276CrossRefGoogle Scholar
  116. Wang X, Li J, Wang Y, Cho KJ, Kim G, Gjyrezi A, Koenig L, Giannakakou P, Shin HJ, Tighiouart M, Nie S, Chen ZG, Shin DM (2009) HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors. ACS Nano 3:3165–3174PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wei W, Xu C, Wu H (2006) Magnetic iron oxide nanoparticles mediated gene therapy for breast cancer – an in vitro study. J Huazhong Univ Sci Technol Med Sci 26:728–730PubMedCrossRefGoogle Scholar
  118. Xie G, Sun J, Zhong G, Shi L, Zhang D (2010) Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84:183–190PubMedCrossRefGoogle Scholar
  119. Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3(7):643–646CrossRefGoogle Scholar
  120. Yun H, Kim JD, Choi HC, Lee CW (2013) Antibacterial activity of CNT-Ag and GO-Ag nanocomposites against Gram-negative and Gram-positive bacteria. Bull Kor Chem Soc 34:3261–3264CrossRefGoogle Scholar
  121. Zhang L, Granick S (2006) How to stabilize phospholipid liposome (using nanoparticles). Nano Lett 6:694–698PubMedCrossRefGoogle Scholar
  122. Zhang L, Ding Y, Povey M, York D (2008) ZnO nanofluids–a potential antibacterial agent. Prog Nat Sci 18(8):939–944CrossRefGoogle Scholar
  123. Zhang Y, Nayak TR, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13(10):1633–1645PubMedPubMedCentralCrossRefGoogle Scholar
  124. Zhou JC, Yang ZL, Dong W, Tang RJ, Sun LD, Yan CH (2011) Bioimaging and toxicity assessments of near-infrared up conversion luminescent NaYF4: Yb, Tm nanocrystals. Biomaterials 32(34):9059–9067PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Pragati Jamdagni
    • 1
  • Parveen Kaur Sidhu
    • 1
  • Poonam Khatri
    • 1
  • Kiran Nehra
    • 1
  • J. S. Rana
    • 1
  1. 1.Department of BiotechnologyDeenbandhu Chhotu Ram University of Science & TechnologyMurthal, SonipatIndia

Personalised recommendations