Materials for Tissue Engineering

  • Pawan Kumar
  • Anil Sindhu


Tissue engineering is an emerging multidisciplinary field where hard tissue failure is cured or replaced by implanting natural, synthetic, or semisynthetic tissues. The need of organ transplantation can be minimized by the application of engineered tissue. The injured tissues and organs are replaced by artificial scaffolds made of polymer, metals, and ceramics. All the materials have different mechanical and biological properties. The engineered biomaterials play pivotal role in the regeneration and restoration of damaged and failure tissues. The key focus of tissue building is to maintain a strategic distance from issues by making natural substitutes equipped for supplanting the harmed tissue. In this review paper, we discussed about the different materials used as scaffold/graft for hard tissue engineering.


Tissue engineering Materials Hard tissue 


  1. Adams JE, Zobitz ME, Lewallen DG et al (2005) Canine carpal joint fusion: a model for four-corner arthrodesis using a porous tantalum implant. J Hand Surg Am 30(6):1128–1135CrossRefPubMedGoogle Scholar
  2. Ahmed TAE, Dare EV, Hincke X, Al AET (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng 14(2):199–215CrossRefGoogle Scholar
  3. Albanna MZ, Bou-akl TH, Blowytsky O et al (2013) Chitosan fibers with improved biological and mechanical properties for tissue engineering applications. J Mech Behav Biomed Mater 20:217–226CrossRefPubMedGoogle Scholar
  4. Al-khateeb KAS, Mustafa AA, Faris A, Sutjipto A (2012) Use of porous alumina bioceramic to increase implant osseointegration to surrounding bone. Adv Mater Res 445:554–559CrossRefGoogle Scholar
  5. Amanda BL, Kibret M (2014) Biodegradable polyphosphazene biomaterials for tissue engineering and delivery of therapeutics. Bio Med Res Int.
  6. Ambrosio AMA, Allcock HR, Katti DS, Laurencin CT (2002) Degradable polyphosphazene/poly (a -hydroxyester) blends: degradation studies. Biomaterials 23:1667–1672CrossRefPubMedGoogle Scholar
  7. Apelt D, Theiss F, EI-Warrak AO, Zlinszky K, Bettschart-Wolfisberger R et al (2004) In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 25:1439–1451CrossRefPubMedGoogle Scholar
  8. Armitage DA, Parker TL, Grant DM (2002) Biocompatibility and hemocompatibility of surface-modified NiTi alloys. J Biomed Mater Res A 66(1):129–137CrossRefGoogle Scholar
  9. Bobyn JD, Stackpool GJ, Hacking HA et al (1999) Characteristics of bone ingrowth and interface mechanics of a new porous. J Bone Joint Surg Br 81(5):907–914CrossRefPubMedGoogle Scholar
  10. Brien FJO (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95CrossRefGoogle Scholar
  11. Bueno EM, Glowacki J (2009) Cell-free and cell-based approaches for bone regenration. Nat Rev Rheumatol 5(12):685–697CrossRefPubMedGoogle Scholar
  12. Cama G, Barberis F, Botter R, Cirillo P, Capurro M et al (2009) Preparation and properties of macroporous brushite bone cements. Acta Biomater 5:2161–2168CrossRefPubMedGoogle Scholar
  13. Conconi MT, Lora S, Baiguera S, Boscolo E et al (2004) In vitro culture of rat neuromicrovascular endothelial cells on polymeric scaffolds. J Biomed Mater Res A 71(4):669–674CrossRefPubMedGoogle Scholar
  14. Davies JE (2007) Bone bonding at natural and biomaterial surfaces. Biomaterials 28(34):5058–5067CrossRefPubMedGoogle Scholar
  15. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Poly Sci:1–19CrossRefGoogle Scholar
  16. Engin NO, Tas AC (1999) Manufacture of macroporous calcium hydroxyapatite bioceramics. J Eur Ceram Soc 19(13–14):2569–2572CrossRefGoogle Scholar
  17. Erbel R, Di Mario C, Bartunek J, Bonnier J et al (2007) Temporary scaff olding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369:1869–1875CrossRefPubMedGoogle Scholar
  18. Farooq I, Imran Z, Farooq U et al (2012) Bioactive glass: a material for the future. World J Dent 3(2):199–201CrossRefGoogle Scholar
  19. Gao JIN, Ph D, Crapo PM et al (2006) Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Eng 12(4):917–925CrossRefPubMedGoogle Scholar
  20. Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36(3):S20–S27CrossRefPubMedGoogle Scholar
  21. Gooptu B, Lomas DA (2008) Polymers and inflammation: disease mechanisms of the serpinopathies. J Exp Med 205:1529–1534CrossRefPubMedPubMedCentralGoogle Scholar
  22. Greiner C, Oppenheimer SM, Dunand DC (2005) High strength, low stiffness, porous NiTi with superelastic properties. Acta Biomater 1:705–716CrossRefPubMedGoogle Scholar
  23. Guo B, Lei B, Peng L, Ma PX (2015) Functionalized scaffolds to enhance tissue regeneration. Regen Biomater 2(1):47–57CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hench LL (1993) Bioceramics: from concept to clinic. Am Ceram Soc Bull 72:93–98Google Scholar
  25. Hentrich RL Jr, Graves GA Jr, Stein HG, Bajpai PK (1971) Evaluation of inert and resorbable ceramics for future clinical orthopedic applications. J Biomed Mater Res 5(1):25–51CrossRefPubMedGoogle Scholar
  26. Heublein B, Rohde, Kaese V et al (2003) Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology ? Heart 89(6):651–656CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hong Z, Reis RL, Mano JF (2008) Preparation and in vitro characterization of novel bioactive glass ceramic nanoparticles. J Biomed Mater Res A 88(2):304–313CrossRefGoogle Scholar
  28. Hutmacher D, Hurzeler MB, Schliephake H (1996) A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implants 11:667–678PubMedGoogle Scholar
  29. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915CrossRefPubMedGoogle Scholar
  30. Laurencin CT, El-Amin SF, Ibim SE, Willoughby DA, Attawia M et al (1996) A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. J Biomed Mater Res 30(2):133–138CrossRefPubMedGoogle Scholar
  31. Laurencin CT, Ambrosio AM, Sahota JS (2003) Novel polyphosphazene-hydroxyapatite composites as biomaterials. IEEE Eng Med Biol Mag 22:18–26CrossRefPubMedGoogle Scholar
  32. Lin F, Yan C, Fan W et al (2010) Preparation of mesoporous bioglass coated zirconia scaffold for bone tissue engineering. Adv Mater Res 365:209–215CrossRefGoogle Scholar
  33. Liu X, Ma MX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486CrossRefPubMedGoogle Scholar
  34. Liu C, Xia Z, Czernuszka JT (2007) Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des 85(7):1051–1064CrossRefGoogle Scholar
  35. Lu JX, About I, Stephan G, van Landuyt P, Dejou J et al (1999) Histological and biomechanical studies of two bone colonizable cements in rabbits. Bone 25:41S–45SCrossRefPubMedGoogle Scholar
  36. Luz GM, Mano JF (2011) Preparation and characterization of bioactive glass nanoparticles prepared by sol–gel for biomedical applications. Nanotechnology 22(49):494014. Scholar
  37. Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7:30–40CrossRefGoogle Scholar
  38. Madihally SV, Matthew HWT (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142CrossRefPubMedGoogle Scholar
  39. Michiardi A, Aparicio C, Planell JA, Gil EJ (2006) New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J Biomed Mater Res B 77(2):249–256CrossRefGoogle Scholar
  40. Naughton GK, Tolbert WR, Grillot TM (1995) Emerging developments in tissue engineering and cell technology. Tissue Eng 1:211–219CrossRefPubMedGoogle Scholar
  41. Okazaki Y (2001) A new Ti – 15Zr – 4Nb – 4Ta alloy for medical applications. Curr Opinion Solid State Mater Sci 5:45–53CrossRefGoogle Scholar
  42. Park JB, Lakes RS (1992) Biomaterials – an introduction, 2nd edn. Plenum Press, New YorkGoogle Scholar
  43. Payne RG, Mcgonigle JS, Yaszemski MJ, Yasko AW et al (2002) Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials 23:4381–4387CrossRefPubMedGoogle Scholar
  44. Pilliar RM (2009) Metallic biomaterials. In: Narayan R (ed) Biomedical materials. Springer, New York, pp 41–81CrossRefGoogle Scholar
  45. Prymak O, Bogdanski D, Ko M, Esenwein SA et al (2005) Morphological characterization and in vitro biocompatibility of a porous nickel – titanium alloy. Biomaterials 26(29):5801–5807CrossRefPubMedGoogle Scholar
  46. Puoci F (2015) Advanced polymers in medicine. Springer, BerlinCrossRefGoogle Scholar
  47. Rai R, Tallawi M, Grigore A, Boccaccini AR (2012) Progress in polymer science synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): a review. Prog Polym Sci 37(8):1051–1078CrossRefGoogle Scholar
  48. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431CrossRefPubMedGoogle Scholar
  49. Sachlos E, Czernuszka J (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:39–40Google Scholar
  50. Salgado J, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–765CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sheikh Z, Sima C, Glogauer M (2015) Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation. Materials 8:2953–2993CrossRefPubMedCentralGoogle Scholar
  52. Siraparapu YD, Bassa S, Sanasi PD (2013) A review on recent applications of biomaterials. Intl J Sci Res 1:70–75Google Scholar
  53. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734CrossRefPubMedGoogle Scholar
  54. Tarnita D, Tarnita DN, Bizdoaca et al (2009) Properties and medical applications of shape memory alloys. Romanian J Morphol Embryol 50(1):15–21Google Scholar
  55. Temeno JS, Mikos AG (2000) Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 21:2405–2412CrossRefGoogle Scholar
  56. Thamaraiselvi TV, Rajeshwari S (2004) Biological evaluation of bioceramic materials – a review. Trends Biometer Artif Organs 18(1):9–17Google Scholar
  57. Vainionpaa S, Kilpikari J, Laiho J, Helevirta P et al (1987) Strength and strength retention vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation. Biomaterials 8:46–48CrossRefPubMedGoogle Scholar
  58. Vert M, Li SM, Guerin P et al (1992) Macromoleculaires, bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3(6):432–446CrossRefGoogle Scholar
  59. Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotechnol 20(6):602–606CrossRefPubMedGoogle Scholar
  60. West J, Hubbell J (1986) Bioactive polymers, synthetic biodegradable polymer scaffolds. Chapter 5. In: Bioactive polymers. Springer, New YorkGoogle Scholar
  61. Yang C, Hillas PJ, Julio AB et al (2004) The application of recombinant human collagen in tissue engineering. BioDrugs 18(2):103–119CrossRefPubMedGoogle Scholar
  62. Yaszemski MJ, Payne RG, Hayes WC et al (1995) The ingrowth of new bone tissue and initial mechanical properties of a degrading polymeric composite scaffold. Tissue Eng 1(1):41–52CrossRefPubMedGoogle Scholar
  63. Zohora FT, Yousuf A, Anwarul M (2014) Biomaterials as porous scaffolds for tissue engineering applications: a review. European Sci J 10(21):186–209Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Pawan Kumar
    • 1
  • Anil Sindhu
    • 2
  1. 1.Department of Materials Science and NanotechnologyD C R University of Science and TechnologyMurthalIndia
  2. 2.Department of BiotechnologyD C R University of Science and TechnologyMurthalIndia

Personalised recommendations