Advertisement

Phytase: The Feed Enzyme, an Overview

  • Namita Singh
  • Sonia Kuhar
  • Kanu Priya
  • Rajneesh Jaryal
  • Rakesh Yadav
Chapter

Abstract

This chapter confers an overview of the food enzyme ‘phytase’ that mediates hydrolysis of phytic acid decoyed in food of plant origin. It emphasizes on the molecular classification, sources and production of phytase along with its practical applications. A wide and comprehensive discussion of the phytase, which performs a pivotal function in biochemistry of inositol phosphates, is covered herein along with cataloguing a number of sources that produce the enzyme. Phytase have promising applications in food and fodder industries for enhancing digestibility and absorption of nutrients by upholding the anti-nutritional value of phytic acid.

Notes

Acknowledgements

This work was supported by Haryana State Council for Science & Technology under the R&D scheme, UGC-SAP, DBT-HRD programme, DBT-BIF and DST-FIST, New Delhi.

References

  1. Aaron A (2006) Expanding our knowledge of protein tyrosine phosphatase-like phytases: mechanism, substrate specificity and pathways of myo-inositol hexakisphosphate dephosphorylation. Dissertation for the Master’s Degree. University of Lethbridge, Lethbridge, p 10–13Google Scholar
  2. Admassu S (2009) Potential health benefits and problems associated with phytochemical in food legumes. East Afr J Sci 3(2):116–133Google Scholar
  3. Akinmusire AS, Adeola O (2009) True digestibility of phosphorus in canola and soybean meals for growing pigs: influence of microbial phytase. J Anim Sci 87:977–983PubMedCrossRefGoogle Scholar
  4. Ali M, Shuja MN, Zahoor M, Qadri I (2010) Phytic acid:how far have we come? Afr J Biotech 9(11):1551–1554CrossRefGoogle Scholar
  5. Angel R, Tamim NM, Applegate TJ, Dhandu AS, Ellestad LE (2002) Phytic acid chemistry: influence on phytin-phosphorus availability and phytase efficacy. J Appl Poult Res 11:471–480CrossRefGoogle Scholar
  6. Angelis MD, Gallo G, Corbo MR, McSweeney PLH, Faccia M, Giovine M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87:259–270PubMedCrossRefGoogle Scholar
  7. Anons (1998) Enzymes emerge as big feed supplement. Chem Eng News 29–302. 4 MayGoogle Scholar
  8. Antrim RL, Mitchinson C, Solheim LP (1997) Method for liquefying starch. US patent 5652127Google Scholar
  9. Arnarson A (2015) PhD. Phytic acid: 101 everything you need to know authority nutrition. http://authoritynutrition.com/phytic-acid-101/
  10. Augspurger NR, Webel DW, Lei XG, Baker DH (2003) Efficacy of E. coli phytase expressedin yeast for releasing phytate-bound phosphorus in young chicks and pigs. J Anim Sci 81:474–483PubMedCrossRefGoogle Scholar
  11. Baldi BG, Scott JJ, Everard JD, Loewus FA (1988) Localization of constitutive phytases in lily pollen and properties of the pH 8 form. Plant Sci 56:137–147CrossRefGoogle Scholar
  12. Bali A, Satyanarayana T (2001) Microbial phytases in nutrition and combating phosphorus pollution. Every Man’s Sci 4:207–209Google Scholar
  13. Barrientos L, Scott JJ, Murthy PP (1994) Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiol 106:1489–1495PubMedCrossRefPubMedCentralGoogle Scholar
  14. Barrier-Guillot B, Casado P, Maupetit P, Jondreville C, Gatel F (1996) Wheat phosphorus availability: in vitro study; factors affecting endogenous phytasic activity and phytic phosphorus content. J Sci Food Agric 70:62–68CrossRefGoogle Scholar
  15. Baur X, Melching-Kollmuss S, Koops F, Straßburger K, Zober A (2002) IgE-mediated allergy to phytase-a new animal feed additive. Allergy 57:943–945PubMedCrossRefGoogle Scholar
  16. Bedford MR (2000) Exogenous enzymes in monogastric nutrition their current value and future benefits. Anim Feed Sci Technol 86:113CrossRefGoogle Scholar
  17. Berka RM, Rey MW, Brown KM, Byun T, Klotz AV (1998) Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl Environ Microbiol 64:4423–4427PubMedPubMedCentralGoogle Scholar
  18. Berridge MJ, Irvine ILF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321PubMedCrossRefGoogle Scholar
  19. Bianchetti R, Sartirana ML (1967) The mechanism of the repression by inorganic phosphate of phytase synthesis in the germinating wheat embryo. Biochim Biophys Acta 145:485–490PubMedCrossRefGoogle Scholar
  20. Bitar K, Reinhold JG (1972) Phytase and alkaline phosphatase activities in intestinal mucose of rat, chicken, calf, and man. Biochim Biophys Acta 268:442–452CrossRefGoogle Scholar
  21. Bogar B, Szakacs G, Tengerdy RP, Linden JC, Pandey A (2003a) Production of phytase by Mucor racemosus in solid-state fermentation. Biotechnol Prod 19(2):312–319CrossRefGoogle Scholar
  22. Bogar B, Szakacs G, Linden JC, Pandey A, Tengerdy RP (2003b) Optimization of phytase production by solid substrate fermentation. J Ind Microbiol Biotech 30(3):183–189CrossRefGoogle Scholar
  23. Boling SD, Douglas MW, Johnson ML, Wang X et al (2000) The effects of dietary available phosphorus levels and phytase performance of young and older laying hens. Poult Sci 79:224–230PubMedCrossRefGoogle Scholar
  24. Brugger R, SimoesNunes C, Hug D, Vogel K, Guggenbuhl P, Mascarello F (2003) Characteristics of fungal phytases from Aspergillus fumigatus and Sartorya fumigata. Appl Microbiol Biotechnol 63:383–389PubMedCrossRefGoogle Scholar
  25. Burbano C, Muzquiz M, Osagic A, Ayet G, Cuadrado C (1995) Determination of phytate and lower inositol phosphates in Spanish legumes by HPLC methodology. Food Chem 52:321–325CrossRefGoogle Scholar
  26. Carla EH, Elizabeth AG (2001) A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol 126:1598–1608CrossRefGoogle Scholar
  27. Carrington AL, Calcutt NA, Ettlinger CB, Gustafsson T, Tomlinson DR (1993) Effects of treatment with myo-inositol or its 1,2,6-trisphosphate (PP56) on nerve conduction in streptozotocin-diabetes. Eur J Pharmacol 237:257–263PubMedCrossRefGoogle Scholar
  28. Casey A, Walsh G (2003) Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142. Bioresour Technol 86(2):183–188PubMedCrossRefGoogle Scholar
  29. Casey A, Walsh G (2004) Identification and characterization of a phytase of potential commercial interest. J Biotechnol 110(3):313–322PubMedCrossRefGoogle Scholar
  30. Chadha BS, Gulati H, Minhas M, Saini HS, Singh N (2004) Phytase production by the thermophilic fungus Rhizomucor pusillus. World J Microbiol Biotechnol 20:105–109CrossRefGoogle Scholar
  31. Chelius MK, Wodzinski RJ (1994) Strain improvement of Aspergillus niger for phytase production. Appl Microbiol Biotechnol 41:79–83CrossRefGoogle Scholar
  32. Chen C, Hunag C, Cheng K (2001) Improvement of phytase thermostability by using sorghum liquor wastes supplemented with starch. Biotechnol Lett 23:331–333CrossRefGoogle Scholar
  33. Cheng KJ, Selinger LB, Yanke LJ, Bae HD, Zhou L, Forsberg CW (1999) Phytases of rumen micro-organisms, particularly of Selenomonas ruminantium, and uses there of in feed additives and in transgenic plants. US Patent 5(985):605Google Scholar
  34. Cheryan M (1980) Phytic acid interactions in food systems. CRC Crit Rev Food Sci Nutr 13:297–335CrossRefGoogle Scholar
  35. Cho JS, Lee CW, Kang SH, Lee JC, Bok JD, Moon YS, Lee HG, Kim SC, Choi YJ (2003) Purification and characterization of a phytase from Pseudomonas syringae MOK1. Curr Microbiol 47:290–294PubMedCrossRefGoogle Scholar
  36. Choi YM, Suh HJ, Kim JM (2001) Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J Protein Chem 20:287–292PubMedCrossRefGoogle Scholar
  37. Chu HM, Guo RT, Lin TW, Chou CC, Shr HL et al (2004) Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis. Structure 12:2015–2024PubMedCrossRefGoogle Scholar
  38. Claxon A, Morris C, Blake D, Siren M et al (1990) The anti-inflammatory effects of D-myo-inositol-1, 2,6-trisphosphate (PP56) on animal models of inflammation. Agents Actions 29:68–70CrossRefGoogle Scholar
  39. Coello P, Maughan JP, Mendoza A, Philip R et al (2001) Generation of low phytic acid Arabidopsis seeds expressing an E. coli phytase during embryo development. Seed Sci Res 11:285–291Google Scholar
  40. Correia I, Aksu S, Adao P, Pessoa JC, Sheldon RA, Arends IWCE (2008) Vanadate substituted phytase: immobilization, structural characterization and performance for sulfoxidations. J Inorg Biochem 102:318–329PubMedCrossRefGoogle Scholar
  41. Cosgrove DJ (1970) Inositol phosphate phosphatase of microbiological origin, inositol pentaphosphate intermediates in the dephosphorylation of the hexaphosphates of myo-inositol, scyllo-inositol, and D-chiro-inositol, by a bacterial (Pseudomonas sp.) phytase. Aust J Biol Sci 23:1207–1220PubMedCrossRefGoogle Scholar
  42. Craxton A, Caffrey JJ, Burkhart W, Safrany ST, Shears SB (1997) Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase. Biochem J 328:75–81PubMedCrossRefPubMedCentralGoogle Scholar
  43. Dahiya S, Kumar K, Kumar N, Singh N (2008) Standardisation of incubation time forphytase enzyme secretion using RSM model international conference on molecular biology and biotechnology. Department of Biosciences and Biotechnology, Banasthali University, p 121. October 19–21Google Scholar
  44. Dahiya S, Singh N, Rana JS (2009) Optimization of growth parameters of phytase producing fungus using RSM. J Sci Ind Res 68(11):955–958Google Scholar
  45. Dahiya S, Kumar K, Kumar N, Singh N, Rana JS (2010) Optimization of assay conditions using RSM approach for phytase enzyme production by Bacillus cereus MTCC 10072. An Biol 26(2):101–107Google Scholar
  46. Dalal RC (1997) Soil organic phosphorus. Adv Agron 29:83–117CrossRefGoogle Scholar
  47. Dao TH (2003) Polyvalent cation effects on myo-inositol hexakis dihydrogen phosphate enzymatic dephosphorylation in dairy wastewater. J Environ Qual 32:694–701PubMedCrossRefGoogle Scholar
  48. Davies NT, Flett AA (1978) The similarity between alkaline phosphatase (EC 3.1.3.1) and phytase (EC 3.1.3.8) activities in rat intestine and their importance in phytate-induced zinc deficiency. Br J Nutr 39:307–316PubMedCrossRefGoogle Scholar
  49. Davies MI, Motzok I (1972) Intestinal alkaline phosphatase and phytase of chicks: separation of isoenzymes, zinc contents and in vitro effects of zinc. Comp Biochem Physiol 42:345–356CrossRefGoogle Scholar
  50. Day PL (1996) Genetic modification of plants: significant issues and hurdles to success. Am J Clin Nutr 63:651S–656SPubMedCrossRefGoogle Scholar
  51. De Angelis M, Gallo G, Corbo MR, McSweeney PLH, Faccia M, Giovine M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus 174 sanfranciscensis CB1. Int J Food Microbiol 87:259–270PubMedCrossRefGoogle Scholar
  52. Dechavez RB, Serrano AE Jr, Nuñal S, Caipang CMA (2011) Production and characterization of phytase from Bacillus spp. as feed additive in aquaculture. AACL Bioflux 4:394–403Google Scholar
  53. Dersjant LY, Awati A, Schulze H, Partridge G (2015) Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agric 95(5):878–896CrossRefGoogle Scholar
  54. Desphande SS, Cheryan M (1984) Effects of phytic acid, divalent cations, and their interactions on alpha-amylase activity. J Food Sci 49:516–519CrossRefGoogle Scholar
  55. Dischinger HC, Ullah AHJ (1992) Immobilization of Aspergillus ficuum phytase by carbohydrate moieties onto cross-linked agarose. Ann N Y Acad Sci 672:583–587CrossRefGoogle Scholar
  56. Doekes G, Kamminga N, Helwegen L, Heederik D (1999) Occupational IgE sensitisation to phytase, a phosphate derived from Aspergillus niger. Occup Environ Med 56:454–459PubMedCrossRefPubMedCentralGoogle Scholar
  57. Dox AW, Golden R (1911) Phytase in lower fungi. J Biol Chem 10:183–186Google Scholar
  58. Eastwood D, Laidman D (1971) The mobilization of macronutrient elements in the germinating wheat grain. Phytochemistry 10:1275–1284CrossRefGoogle Scholar
  59. Ebune A, Alasheh S, Duvnjak Z (1995) Production of phytase during solid-state fermentation using Aspergillus-ficuum NRRL-3135 in canola-meal. Bioresour Technol 53(1):7–12CrossRefGoogle Scholar
  60. Eeckhout W, de Paepe M (1994) Total phosphorus, phytate-phosphorus and phytase activity in plant feed stuffs. Anim Feed Sci Technol 47:19–29CrossRefGoogle Scholar
  61. Ehrlich KC, Montalbano BG, Mullaney EJ, Dischinger HC, Ullah AHJ (1993) Identification and cloning of a second phytase gene (phyB) from Aspergillus niger (ficuum). Biochem Biophys Res Commun 195:53–57PubMedCrossRefGoogle Scholar
  62. Elliott S, Chang CW, Schweingruber ME, Schaller J et al (1986) Isolation and characterization of the structural gene for secreted acid phosphatase from Schizosaccharomyces pombe. J Biol Chem 261:2936–2941PubMedGoogle Scholar
  63. European Union (2004a) Official Journal of the European Union C 50/52, published 25/02/2004Google Scholar
  64. European Union (2004b) Official Journal of the European Union C 50/95, published 25/02/2004Google Scholar
  65. European Union (2004c) Official Journal of the European Union C 50/112, published 25/02/2004Google Scholar
  66. European Union (2004d) Official Journal of the European Union L 270/12, published 18/08/2004Google Scholar
  67. Farhat A, Chouayekh H, Ben FM, Bouchaala K, Bejar S (2008) Gene cloning and characterization of a thermostable phytase from Bacillus subtilis US417 and assessment of its potential as a feed additive in comparison with a commercial enzyme. Mol Biotechnol 40(2):127–135PubMedCrossRefGoogle Scholar
  68. Findenegg GR, Nelemans JA (1993) The effect of phytase on availability of P from myo-inositol hexaphosphate (phytate) for maize roots. Plant Soil 154:189–196CrossRefGoogle Scholar
  69. Fleming DJ, Tucker KL, Jacques PF, Dallal GE et al (2002) Dietary factors associated with the risk of high iron stores in the elderly Framingham Heart Study cohort. Am J Clin Nutr 76:1375–1384PubMedCrossRefGoogle Scholar
  70. Fredrikson M, Biot P, Larsson Alminger M, Carlsson NG, Sandberg AS (2001) Production process for high-quality pea-protein isolate with low content of oligosaccharides and phytate. J Agric Food Chem 49:1208–1212PubMedCrossRefGoogle Scholar
  71. Fredrikson M, Andlid T, Haikara A, Sandberg AS (2002) Phytate degradation by micro-organisms in synthetic media and pea flour. J Appl Microbiol 93:197–204PubMedCrossRefGoogle Scholar
  72. Freund WD, Mayr GW, Tietz C, Schultz JE (1992) Metabolism of inositol phosphates in the protozoan Paramecium. Eur J Biochem 207:359–367PubMedCrossRefGoogle Scholar
  73. Gabard KA, Jones RL (1986) Localization of phytase and acid phosphatase isoenzymes in aleurone layers of barley. Physiol Plant 67:182–192CrossRefGoogle Scholar
  74. Gargova S, Roshkova Z, Vancheva G (1997) Screening of fungi for phytase production. Biotechnol Lett 11:221–224Google Scholar
  75. Gargova S, Sariyska M (2003) Effect of culture conditions on the biosynthesis of Aspergillus niger phytase and acid phosphatase. Enzym Microb Technol 32:231–235CrossRefGoogle Scholar
  76. Garrett JB, Kretz KA, O’Donoghue E, Kerovuo J et al (2004) Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Appl Environ Microbiol 70:3041–3046PubMedCrossRefPubMedCentralGoogle Scholar
  77. Gautam P, Sabu A, Pandey A, Szakacs G, Soccol CR (2002) Microbial production of extra-cellular phytase using polystyrene as inert solid support. Bioresour Technol 83(3):229233CrossRefGoogle Scholar
  78. Gibson DM (1987) Production of extracellular phytase from Aspergillus ficuum on starch media. Biotechnol Lett 9:305–310CrossRefGoogle Scholar
  79. Gibson DM, Ullah AHJ (1988) Purification and characterization of phytase from cotyledons of germinating soybean seeds. Arch Biochem Biophys 260:503–513PubMedCrossRefGoogle Scholar
  80. Gibson DM, Ullah AB (1990) Phytase and their action on phytic acid in inositol metabolism in plants. Arch Biochem Biophys 262:77–92Google Scholar
  81. Golovan S, Wang G, Zhang J, Forsberg CW (2000) Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can J Microbiol 46:59–71PubMedCrossRefGoogle Scholar
  82. Grases F, Simonet BM, Prieto RM, March JG (2001) Dietary phytate and mineral bioavailability. J Trace Elem Med Biol 15(4):221–228PubMedCrossRefGoogle Scholar
  83. Greaves MP, Anderson G, Webley DM (1967) The hydrolysis of inositol phosphates by Aerobacter aerogenes. Biochim Biophys Acta 132:412–418PubMedCrossRefGoogle Scholar
  84. Greiner R (2001) Properties of phytate-degrading enzymes from germinated lupine seeds (Lupinus Albus var.Amiga). Proceedings of the 4th European Conference on Grain Legumes, Cracow, Poland. p 398–399Google Scholar
  85. Greiner R, Konietzny U (1996) Construction of a bioreactor to produce special breakdown products of phytate. J Biotechnol 48:153–159PubMedCrossRefGoogle Scholar
  86. Greiner R, Konietzny U (2006) Phytase for food application. Food Technol Biotechnol 44(2):125–140Google Scholar
  87. Greiner R, Larsson Alminger M (1999) Purification and characterization of a phytate-degrading enzyme from germinated oat (Avena sativa). J Sci Food Agric 79:1453–1460CrossRefGoogle Scholar
  88. Greiner R, Konietzny U, Jany KD (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113PubMedCrossRefGoogle Scholar
  89. Greiner R, Haller E, Konietzny U, Jany KD (1997) Purification and characterization of a phytase from Klebsiella terrigena. Arch Biochem Biophys 341:201–206PubMedCrossRefGoogle Scholar
  90. Greiner R, Jany KD, Larsson Alminger M (2000) Identification and properties of myo-inositol hexakisphosphate phosphohydrolases (phytases) from barley (Hordeum vulgare). J Cereal Sci 31:127–139CrossRefGoogle Scholar
  91. Greiner R, Larsson Alminger M, Carlsson NG et al (2002) Enzymatic phytate degradation – a possibility to design functional foods? Poult J Food Nutr Sci 11:50–54Google Scholar
  92. Guerrero-Olazarán M, Rodríguez-Blanco L, Carreon-Treviño JG, Gallegos-López JA, Viader-Salvadó JM (2010) Expression of a Bacillus phytase C gene in Pichia pastoris and properties of the recombinant enzyme. Appl Environ Microbiol 76(16):5601–5608PubMedCrossRefPubMedCentralGoogle Scholar
  93. Gulati HK, Chadha BS, Saini HS (2007a) Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil. J Ind Microbiol Biotechnol 34:91–98PubMedCrossRefGoogle Scholar
  94. Gulati HK, Chadha BS, Saini HS (2007b) Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7. Acta Microbiol Immunol Hung 54(2):121–138PubMedCrossRefGoogle Scholar
  95. Haefner S, Knietsch A, Scholten E, Braun J et al (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597PubMedCrossRefGoogle Scholar
  96. Han YW, Gallagher DJ (1987) Phosphatase production by Aspergillus ficuum. J Ind Microbiol 1:295–301CrossRefGoogle Scholar
  97. Han Y, Wilson DB, Lei X (1999) Expression of an Aspergillus niger Phytase Gene (phyA) in Saccharomyces cerevisiae. Appl Environ Microbiol 65(5):1915–1918PubMedPubMedCentralGoogle Scholar
  98. Hara A, Ebina S, Kondo A, Funagua T (1985) A new type of phytase from Typhalatifolia. Agric Biol Chem 49:3539–3544CrossRefGoogle Scholar
  99. Harland BF, Morris ER (1995) Phytate: a good or a bad food component. Nutr Res 15:733–754CrossRefGoogle Scholar
  100. Harland BF, Oberleas D (1977) A modified method for phytate analysis using an ion-exchange procedure: application to textured proteins. Cereal Chem 54:827–832Google Scholar
  101. Haros M, Rosell CM, Benedito C (2001) Fungal phytase as a potential bread making additive. Eur Food Res Technol 213:317–322CrossRefGoogle Scholar
  102. Hayes JE, Simpson RJ, Richardson AE (2000) The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant Soil 220:165–174CrossRefGoogle Scholar
  103. Hegeman CE, Grabau EA (2001) A novel phytase with sequence similarity to purple acid phosphatase is expressed in cotyledons of germinating soybean seedling. Plant Physiol 126:1598–1608PubMedCrossRefPubMedCentralGoogle Scholar
  104. Heinonen JK, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and itsapplication to the assay of inorganic pyrophosphatase. Anal Biochem 113:313–317PubMedCrossRefGoogle Scholar
  105. Hemrika W, Renirie R, Dekker HL, Barnett P, Wever R (1997) From phosphatases to vanadium peroxidases: a similar architecture of the active site. Proc Natl Acad Sci USA 94:2145–2149PubMedCrossRefPubMedCentralGoogle Scholar
  106. Hengge-Aronis R (1996) Regulation of gene expression during entry into stationary phase. In: Neidhardt (ed) Escherichia coli and Salmonella: cellular and molecular biology, vol 1, 2nd edn. ASM Press, Washington, DC, pp 1497–1512Google Scholar
  107. Hill BE, Sutton AL, Richert BT (2009) Effects of low-phytic acid corn, low-phytic acid soybean meal, and phytase on nutrient digestibility and excretion in growing pigs. J Anim Sci 87:1518–1527PubMedCrossRefGoogle Scholar
  108. Hong CY, Cheng KJ, Tseng TH, Wang CS, Liu LF, Yu SM (2004) Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res 13:29–39PubMedCrossRefGoogle Scholar
  109. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149PubMedCrossRefGoogle Scholar
  110. Houde RL, Alli I, Kermasha S (1990) Purification and characterization of canola seed (Brassica sp.) phytase. J Food Biochem 114:331–351CrossRefGoogle Scholar
  111. Huang J, Zhou W, Watson AM, Jan YN, Hong Y (2008) Efficient ends-out gene targeting in Drosophila. Genetics 180(1):703–707PubMedCrossRefPubMedCentralGoogle Scholar
  112. Huang HQ, Shao N, Wang YR, Luo HY, Yang PL, Zhou ZG, Zhan ZC, Yao B (2009) A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Appl Microbiol Biotechnol 83(2):249–259PubMedCrossRefGoogle Scholar
  113. Hubel F, Beck E (1996) Maize root phytase. Plant Physiol 112:1429–1436PubMedCrossRefPubMedCentralGoogle Scholar
  114. Idriss EE, Makarewicz O, Farouk A, Rosner K et al (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109PubMedCrossRefGoogle Scholar
  115. Igbasan FA, Männer K, Miksch G, Borriss R, Farouk A, Simon O (2000) Comparative studies on the in vitro properties of phytases from various microbial origins. Arch Anim Nutr 53:353–373Google Scholar
  116. Iqbal TH, Lewis KO, Cooper BT (1994) Phytase activity in the human and rat small intestine. Gut 35:1233–1236PubMedCrossRefPubMedCentralGoogle Scholar
  117. Ireland MM, Karty JA, Quardokus EM, Reilly JP, Brun YV (2002) Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake. Mol Microbiol 45(4):1029–1041PubMedCrossRefGoogle Scholar
  118. Jackson JF, Linskens HF (1982) Phytic acid in Petunia hybrida pollen is hydrolysed during germination by a phytase. Acta Bot Neerlandica 315:441–447CrossRefGoogle Scholar
  119. Jareonkitmongkol S, Ohya M, Watanabe R, Takagi H, Nakamori S (1997) Partial purification from a soil isolates bacterium, Klebsiella oxytoca MO-3. J Ferment Bioeng 83:393–394CrossRefGoogle Scholar
  120. Jariwalla RJ, Sabin R, Lawson S, Herman ZS (1990) Lowering of serum cholesterol and triglycerides and modulation of divalent cations by dietary phytate. J Appl Nutr 42:18–28Google Scholar
  121. Jenab M, Thompson LU (2002) Role of phytic acid in cancer and other diseases. In: Reddy NR, Sathe SK (eds) Food phytates. CRC Press, Boca Raton, pp 225–248Google Scholar
  122. Jog SP, Garchow BG, Mehta BD, Murthy PPN (2005) Alkaline phytase from lily pollen: investigation of biochemical properties. Arch Biochem Biophys 440:133–140PubMedCrossRefGoogle Scholar
  123. Kaur P, Satyanarayana T (2010) Improvement in cell-bound phytase activity of Pichia anomala by permeabilization and applicability of permeabilized cells in soymilk dephytinization. J Appl Microbiol 108:2041–2049PubMedGoogle Scholar
  124. Kebreab E, Hansen AV, Strathe A (2012) Animal production for efficient phosphate utilization: from optimised feed to high efficiency livestock. Curr Opin Biotechnol 23:872–877PubMedCrossRefGoogle Scholar
  125. Kemme PA, Jongbloed AW, Mroz Z, Beynen AC (1997) The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs is influenced by pig physiological status. J Anim Sci 75:2129–2138PubMedCrossRefGoogle Scholar
  126. Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning and sequencing of novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085PubMedPubMedCentralGoogle Scholar
  127. Kerovuo J, Lappalainen I, Reinikainen T (2000) The metal dependence of Bacillus subtilis phytase. Biochem Biophys Res Commun 268:365–369PubMedCrossRefGoogle Scholar
  128. Kies AK, De Jonge LH, Kemme PA, Jongbloed AW (2006) Interaction between protein, phytate, and microbial phytase: in vitro studies. J Agric Food Chem 54:1753–1758PubMedCrossRefGoogle Scholar
  129. Kim DS, Godber JS, Kim HR (1999a) Culture conditions for a new phytase producing fungus. Biotechnol Lett 21:1077–1081CrossRefGoogle Scholar
  130. Kim HW, Kim YO, Lee JH, Kim KK, Kim YJ (2003) Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnol Lett 25:1231–1234PubMedCrossRefGoogle Scholar
  131. Kim JC, Simmins PH, Mullan BP, Pluske JR (2005) The effect of wheat phosphorus content and supplemental enzymes on digestibility and growth performance of weaner pigs. Anim Feed Sci Technol 118:139–152CrossRefGoogle Scholar
  132. Kim YO, Kim HK, Bae KS, Yu JH, Oh TK (1998a) Purification and properties of thermostable phytase from Bacillus sp. DSII. Enzym Microb Technol 22:2–7CrossRefGoogle Scholar
  133. Kim YO, Lee JK, Kim HK, Yu JH, Oh TK (1998b) Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its over-expression in Escherichia coli. FEMS Microbiol Lett 162:185–191PubMedCrossRefGoogle Scholar
  134. Kim YO, Lee JK, Oh BC, Oh TK (1999b) High-level expression of a recombinant thermostable phytase in Bacillus subtilis. Biosci Biotechnol Biochem 63:2205–2207PubMedCrossRefGoogle Scholar
  135. Kleist S, Miksch G, Hitzmann B, Arndt M, Friehs K, Flaschel E (2003) Optimization of the extracellular production of a bacterial phytase with Escherichia coli by using different fed-batch fermentation strategies. Appl Microbiol Biotechnol 61:456–462PubMedCrossRefGoogle Scholar
  136. Konietzny U, Greiner R (2002) Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int J Food Sci Tech 37(7):791–812CrossRefGoogle Scholar
  137. Konietzny U, Greiner R (2003) Phytic acid: nutritional impact. In: Caballero B, Trugo L, Finglas P (eds) Encyclopedia of food science and nutrition. Elsevier, London, pp 4555–4563CrossRefGoogle Scholar
  138. Konietzny U, Greiner R, Jany KD (1995) Purification and characterization of a phytases from spelt. J Food Biochem 18:165–183CrossRefGoogle Scholar
  139. Kornegay ET, Denbow DM, Yi Z, Ravindran V (1996) Response of broilers to graded levels of microbial phytase added to maize–soyabean meal-based-diets containing three levels of non-phytate phosphorus. Br J Nutr 75:839–852PubMedCrossRefGoogle Scholar
  140. Kornegay ET, Zhang Z, Denbow DM (1999) Influence of microbial phytase supplementation of a low protein/amino acid diet on performance, ileal digestibility of protein and amino acids, and carcass measurements of finishing broilers. In: Phytase in animal nutrition and waste management, 2nd rev edn. BASF Corporation, Mount Olive, pp 557–572Google Scholar
  141. Kostrewa D, Wyss M, D’Arcy A, van Loon APGM (1999) Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2.4 A resolution. J Mol Biol 288:965–974PubMedCrossRefGoogle Scholar
  142. Krishna C, Nokes SE (2001) Predicting vegetative inoculum performance to maximize phytase production in solid-state fermentation using response surface methodology. J Ind Microbiol Biotechnol 26:161–170PubMedCrossRefGoogle Scholar
  143. Kuhar S, Singh N, Rana JS (2009) Isolation and statistical optimization of growth parameters for a phosphate pollution controlling NSB-10 bacteria. Proc Int Conf Changing Environ Trends and Sustainable Development, Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125001, India, Feb 9–11. p 141–144Google Scholar
  144. Kumar V, Sinha AK, Makkar HPS, De Boeck G, Becker K (2012) Phytate and phytase in fish utrition. J Anim Physiol Anim Nutr 96:335–364CrossRefGoogle Scholar
  145. Kvist S, Carlsson T, Lawther JM, DeCastro FB (2005) Process for the fractionation of cereal brans. US patent application US 20050089602Google Scholar
  146. Laboure AM, Gagnon J, Lescure AM (1993) Purification and characterization of a phytase (myo–inositolhexakisphosphate phosphohydrolase) accumulated in maize (Zea mays) seedlings during germination. Biochem J 295:413–419PubMedCrossRefPubMedCentralGoogle Scholar
  147. Lambrechts C, Boze H, Segueilha L, Moulin G, Galzy P (1993) Influence of culture conditions on the biosynthesis of Schwanniomyces castellii phytase. Biotechnol Lett 15(4):399–404CrossRefGoogle Scholar
  148. Lan GQ, Abdullah N, Jalaludin S, Ho YW (2002) Optimization of carbon and nitrogen sources for phytase production by Mitsuokella jalaludinii, a new rumen bacterial species. Lett Appl Microbiol 35(2):157–161PubMedCrossRefGoogle Scholar
  149. Lassen SF, Breinholt J, Østergaard PR, Brugger R et al (2001) Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, Ceriporia sp., and Trametes pubescens. Appl Environ Microbiol 67:4701–4707PubMedCrossRefPubMedCentralGoogle Scholar
  150. Lehmann M, Kostrewa D, Wyss M, Brugger R, D’Arcy A, Pasamontes L (2000) From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Eng 13(1):49–57PubMedCrossRefGoogle Scholar
  151. Lei XG, Stahl C (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl Microbiol Biotechnol 57:474–481PubMedCrossRefGoogle Scholar
  152. Li J, Hegemann CE, Hanlon RW, Lacy GH, Denbow DM, Grabau EA (1997) Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol 114:1103–1111PubMedCrossRefPubMedCentralGoogle Scholar
  153. Li R, Lu W, Gu J, Li X, Guo C, Xiao K (2011) Molecular characterization and functional analysis of OsPHY2, a phytase gene classified in histidine acid phosphatase type in rice (Oryza sativa L.). Afr J Biotechnol 10(54):11110–11123Google Scholar
  154. Li X, Chi Z, Liu Z, Li J, Wang X, Hirimuthugoda NY (2008) Purification and characterization of extracellular phytase from a marine yeast Kodamaea ohmeri BG3. Mar Biotechnol 10:190–197PubMedCrossRefGoogle Scholar
  155. Li X, Liu Z, Chi Z, Li J, Wang X (2009) Molecular cloning, characterization, and expression of the phytase gene from marine yeast Kodamaea ohmeri BG3. Mycol Res 113:24–32PubMedCrossRefGoogle Scholar
  156. Lin JJ, Dickinson DB, Ho THD (1987) Phytic acid metabolism in lily (Lilium longiflorum Thunb) pollen. Plant Physiol 83:408–413PubMedCrossRefPubMedCentralGoogle Scholar
  157. Lim D, Golovan S, Forsberg CW, Jia ZC (2000) Crystal structures of Escherichia coli phytase and its complex with phytate. Nat Struct Biol 7(2):108–113PubMedCrossRefGoogle Scholar
  158. Liu BL, Jong CH, Tzeng YM (1999) Effect of immobilization on pH and thermal stability of Aspergillus ficuum phytase. Enzym Microb Technol 25:517–521CrossRefGoogle Scholar
  159. Liu J, Bollinger DW, Ledoux DR, Veum TL (1998) Lowering the dietary calcium to total phosphorus ratio increased phosphorus utilization in low phosphorus corn–soybean meal diets supplemented with microbial phytase for growing–finishing pigs. J Anim Sci 76:808–813PubMedCrossRefGoogle Scholar
  160. Loewus F (2002) Biosynthesis of phytate in food grains and seeds. In: Reddy NR, Sathe SK (eds) Food phytates. CRC Press, Boca Raton, pp 53–61Google Scholar
  161. Lopez HW, Leenhardt F, Coudray C, Remesy C (2002) Minerals and phytic acid interactions: is it a real problem for human nutrition? Int J Food Sci Technol 37:727–739CrossRefGoogle Scholar
  162. Maenz DD (2001) Enzymatic and other characteristics of phytases as they relate to their use in animal feeds. In: Bedford R, Partridge GG (eds) Enzymes in farm animal nutrition. CABI Publishing, UK, p 6184Google Scholar
  163. Maenz DD, Classen HL (1998) Phytase activity in the small intestinal brush-border membrane of the chicken. Poult Sci 77:557–563PubMedCrossRefGoogle Scholar
  164. Maffucci T, Piccolo E, Cumashi A, Iezzi M et al (2005) Inhibition of the phosphatidylinositol-3-kinase/Akt pathway by inositol pentakisphosphate results in antiangiogenic and antitumor effects. Cancer Res 65:8339–8349PubMedCrossRefGoogle Scholar
  165. Mallin MA (2000) Impacts of industrial animal production on rivers and estuaries. Anim Sci 88:26–37Google Scholar
  166. Mandviwala TN, Khire JM (2000) Production of high activity thermostable phytase from thermotolerant phytase from thermotolerant Aspergillus niger in solid state fermentation. J Ind Microbiol Biotechnol 24:237–243CrossRefGoogle Scholar
  167. Maugenest S, Martinez I, Lescure AM (1997) Cloning and characterization of a cDNA encoding a maize seedling phytase. Biochem J 322:511–517PubMedCrossRefPubMedCentralGoogle Scholar
  168. Maugenest S, Martinez I, Godin B, Perez P, Lescure AM (1999) Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Mol Biol 39:503–514PubMedCrossRefGoogle Scholar
  169. McCollum EV, Hart EB (1908) On the occurrence of a phytin-splitting enzyme in animal tissue. J Biol Chem 4:497–500Google Scholar
  170. Miettinen-Oinonen A, Torkkeli T, Paloheimo M, Nevalainen H (1997) Overexpression of the Aspergillus niger pH 2.5 acid phosphatase gene in a heterologous host Trichoderma reesei. J Biotechnol 58:13–20PubMedCrossRefGoogle Scholar
  171. Miksch G, Kleist S, Friehs K, Flaschel E (2002) Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors. Appl Microbiol Biotechnol 59:685–694PubMedCrossRefGoogle Scholar
  172. Misset O (2003) Phytase. Food Sci Technol 122:687–706Google Scholar
  173. Mitchell DB, Vogel K, Weimann BJ, Pasamontes L, Van Loon APGM (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143:245–252PubMedCrossRefGoogle Scholar
  174. Mullaney EJ, Ullah AH (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312(1):179–184PubMedCrossRefGoogle Scholar
  175. Mullaney EJ, Daly CB, Ullah AHJ (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199PubMedCrossRefGoogle Scholar
  176. Mullaney EJ, Daly CB, Kim T, Porres JM, Lei XG, Sethumadhavan K, Ullah AHJ (2002) Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Biochem Biophys Res Commun 297:1016–1020PubMedCrossRefGoogle Scholar
  177. Mullaney EJ, Ullah AH, Turner B, Richardson A, Mullaney E (2007) Phytases: attributes, catalytic mechanisms and applications. In: Inositol phosphates: linking agriculture and the environment. p 97–110Google Scholar
  178. Nagashima T, Tange T, Anazawa H (1999) Dephosphorylation of phytate by using the Aspergillus nigerphytase with a high affinity for phytate. Appl Environ Microbiol 65:4682–4684PubMedPubMedCentralGoogle Scholar
  179. Nakamura Y, Fukuhara H, Sano L (2000) Secreted phytase activities of yeasts. Biosci Biotechnol Biochem 64:841–844PubMedCrossRefGoogle Scholar
  180. Nakano T, Joh T, Narita K, Hayakawa T (2000) The pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases from wheat bran of Triticum aestivum L. cv. Nourin 61. Biosci Biotechnol Biochem 64:995–1003PubMedCrossRefGoogle Scholar
  181. Nampoothiri KM, Tomes GJ, Roopesh K, Szakacs G, Nagy V, Soccol CR, Pandey A (2004) Thermostable phytase production by thermoascus aurantiacus in submerged fermentation. Appl Biochem Biotechnol 118:205–214PubMedCrossRefGoogle Scholar
  182. Nelson TS (1967) The utilization of phytate phosphorus by poultry. Poult Sci 46:862–871PubMedCrossRefGoogle Scholar
  183. Oh BC, Chang BS, Park KH, Ha NC, Kim HK, Oh BH, Oh TK (2001) Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11. Biochemistry 40:9669–9676PubMedCrossRefGoogle Scholar
  184. Oh BC, Choi WC, Park S, Kim YO, Oh TK (2004) Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl Microbiol Biotechnol 63:362–372PubMedCrossRefGoogle Scholar
  185. Ohkawa T, Ebisuno S, Kitagawa M, Morimoto S, Miyazaki Y, Yasukawa S (1984) Rice bran treatment for patients with hypercalciuric stones: experimental and clinical studies. J Urol 132:1140–1145PubMedCrossRefGoogle Scholar
  186. Pandey A, Szakacs G, Soccol CR, Rodriguez-Leon JA, Soccol VT (2001) Production, purification and properties of microbial phytases. Bioresour Technol 77:203–214PubMedCrossRefGoogle Scholar
  187. Papagianni M, Nokes SE, Filer K (2000) Production of phytase by Aspergillus niger in submerged and solid-state fermentation. Process Biochem 35(3–4):397–402Google Scholar
  188. Parkkonen T, Tervila-Wilo A, Hopeakoski-Nurminen M, Morgan A, Poutanen K, Autio K (1997) Changes in wheat microstructure following in vitro digestion. Acta Agric Scand Sect B Soil Plant Sci 47:43–47Google Scholar
  189. Pasamontes L, Haiker M, Wyss M, Tessier M, Loon APGM (1997) Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol 63:1696–1700PubMedPubMedCentralGoogle Scholar
  190. Patwardhan VN (1937) The occurrence of a phytin splitting enzyme in the intestines of albino rats. Biochem Lett 31:560–564CrossRefGoogle Scholar
  191. Phillippy BQ (1999) Susceptibility of wheat and Aspergillus niger phytases to inactivation by gastrointestinal enzymes. J Agric Food Chem 47:1385–1388PubMedCrossRefGoogle Scholar
  192. Phillipy BQ, Mullaney EJ (1997) Expression of an Aspergillus niger phytase (phyA) in Escherichia coli. J Agric Food Chem 45:3337–3342CrossRefGoogle Scholar
  193. Piddington CS, Houston CS, Paloheimo M, Cantrell M, Miettinen-Oinonen A, Nevalanien H (1993) The cloning and sequencing of the genes encoding phytase (phy) and pH 25 optimum acid phosphatase (aph) from Aspergillus niger var. awamori. Gene 133:55–62PubMedCrossRefGoogle Scholar
  194. Pinky G, Sabu A, Pandey A, Szakacs G, Soccol CR (2002) Microbial production of extra-cellular phytase using polystyrene as inert solid support. Bioresour Technol 83(3):229–233CrossRefGoogle Scholar
  195. Pomar C, Gagne F, Matte JJ, Barnett G, Jondreville C (2008) The effect of microbial phytase on true and apparent ileal amino acid digestibilities in growing-finishing pigs. J Anim Sci 86:1598–1608PubMedCrossRefGoogle Scholar
  196. Posternak T (1965) The cyclilols. Hermann, ParisGoogle Scholar
  197. Powar VK, Jagannathan V (1982) Purification and properties of phytate-specific phosphatase from Bacillus subtilis. J Bacteriol 151:1102–1108PubMedPubMedCentralGoogle Scholar
  198. Promdonkoy P, Tang K, Sornlake W, Harnpicharnchai P et al (2009) Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris. FEMS Microbiol Lett 290(1):18–24PubMedCrossRefGoogle Scholar
  199. Quan CH, Zhang LH, Wang YJ, Ohta Y (2001) Production of phytase in a low phosphate medium by a novel yeast Candida krusei. J Biosci Bioeng 92:154–160PubMedCrossRefGoogle Scholar
  200. Quan CH, Zhang LH, Wang YJ, Ohta Y (2002) Purification and properties of a phytase from Candida krusei WZ-001. J Biosci Bioeng 94:111–119Google Scholar
  201. Quan CS, Tian WJ, Fan SD, Kikuchi YI (2004) Purification and properties of a low-molecular-weight phytase from Cladosporium sp. FP-1. J Biosci Bioeng 97:260–266PubMedCrossRefGoogle Scholar
  202. Raghavendra P, Halami PM (2009) Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine. Int J Food Microbiol 133(1–2):129–134PubMedCrossRefGoogle Scholar
  203. Ramachandaran S, Krishnan R, Nampoothiri KM, Szackacs G, Pandey A (2005) Mixed substrate fermentation for the production of phytase by Rhizopus spp. using oil cakes as substrates. Process Biochem 40(5):1749–1754CrossRefGoogle Scholar
  204. Rao DE, Rao KV, Reddy VD (2008) Cloning and expression of Bacillus phytase gene (phy) in Escherichia coli and recovery of active enzyme from the inclusion bodies. J Appl Microbiol 105(4):1128–1137PubMedCrossRefGoogle Scholar
  205. Rapoport S, Leva E, Guest GM (1941) Phytase in plasma and erythrocytes of vertebrates. Biol Chem 139:621–632Google Scholar
  206. Ravindran V, Bryden WL, Kornegay ET (1995) Phytases: occurrence, bioavailability and implications in poultry nutrition. Poult Avian Biol Rev 6:125–143Google Scholar
  207. Ravindran V, Selle PH, Bryden WL (1999) Effects of phytase supplementation, individually and in combination, on the nutritive value of wheat and barley. Poult Sci 78:1588–1595PubMedCrossRefGoogle Scholar
  208. Reddy NR (2002) Occurrence, distribution, content, and dietary intake of phytate. In: Reddy NR, Sathe SK (eds) Food phytates. CRC Press, Boca Raton, pp 25–51Google Scholar
  209. Reddy NR, Pierson MD (1994) Reduction in antinutritional and toxic components in plant foods by fermentation. Food Res Int 27(3):281–290CrossRefGoogle Scholar
  210. Reddy NR, Sathe SK, Salunkhe DK (1982) Phytases in legumes and cereals. Adv Food Res 82:1–92Google Scholar
  211. Richardson AE, Barea J, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 339:305–339CrossRefGoogle Scholar
  212. Richardson AE, Hadobas PA, Hayes JE (2000) Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ 23:397–405CrossRefGoogle Scholar
  213. Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649PubMedCrossRefGoogle Scholar
  214. Richardson NL, Higgs DA, Beames RM, McBride JR (1985) Influence of dietary calcium, phosphorus, zinc, and sodium phytate level on cataract incidence, growth and histopathology in juvenile Chinook salmon (Oncorhynchus tshawytscha). J Nutr 115:553–567PubMedCrossRefGoogle Scholar
  215. Rodriguez E, Han Y, Lei XG (1999) Cloning, sequencing and expression of an Escherichia coli phosphates/phytase gene (appA2) isolated from pig colon. Biochem Biophys Res Commun 257:117–123PubMedCrossRefGoogle Scholar
  216. Rodriguez E, Mullaney EJ, Lei XG (2000a) Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochem Biophys Res Commun 268:373–378PubMedCrossRefGoogle Scholar
  217. Rodriguez E, Wood ZA, Karplus PA, Lei XG (2000b) Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch Biochem Biophys 382(1):105–112PubMedCrossRefGoogle Scholar
  218. Roopesh K, Ramachandran S, Nampoothiri KM, Szakacs G, Pandey A (2005) Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresour Technol 97(3):506–511PubMedCrossRefGoogle Scholar
  219. Roy T, Banerjee G, Dan SK, Ray AK (2013) Optimization of fermentation conditions for phytase production by two strains of Bacillus licheniformis (LF1 and LH1) isolated from the intestine of Rohu, Labeo rohita (Hamilton). In: Proceedings of the zoological society, vol 66. Springer-Verlag, p 27–35CrossRefGoogle Scholar
  220. Ruf JC, Ciavatti M, Gustafsson T, Renaud S (1991) Effects of PP-56 and vitamin E on platelet hyperaggregability, fatty acid abnormalities, and clinical manifestations in streptozotocin-induced diabetis rats. Diabetis 40:233–239CrossRefGoogle Scholar
  221. Rumsey GL (1993) Fish meal and alternate source of protein in fish feeds: update 1993. Fisheries 18:14–19CrossRefGoogle Scholar
  222. Sabu A, Sarita S, Pandey A, Bogar B, Szakacs G, Soccol CR (2002) Solid-state fermentation for production of phytase by Rhizopus oligosporus. Appl Biochem Biotechnol 102–103:251–260PubMedCrossRefGoogle Scholar
  223. Sajidan A, Farouk A, Greiner R, Jungblut P, Müller EC, Borriss R (2004) Molecular and physiological characterization of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol 65:110–118PubMedCrossRefGoogle Scholar
  224. Sandberg AS, Brune M, Carlsson NG, Hallberg L, Skoglund E, Rossander-Hulthen L (1999) Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. Am J Clin Nutr 70:240–246PubMedCrossRefGoogle Scholar
  225. Sands JS, Ragland D, Wilcox JR, Adeola O (2003) Relative bioavailability of phosphorus in low-phytate soybean meal for broiler chicks. Can J Anim Sci 83:95–100CrossRefGoogle Scholar
  226. Sano K, Fukuhara H, Nakamura Y (1999) Phytase of the yeast Arxula adeninivorans. Biotechnol Lett 21:33–38CrossRefGoogle Scholar
  227. Sartirana ML, Bianchetti R (1967) The effect of phosphate on the development of phytase in the wheat embryo. Physiol Plant 20:1066–1075CrossRefGoogle Scholar
  228. Scott JJ, Loewus FA (1986) A calcium-activated phytase from pollen of Lilium longiflorum. Plant Physiol 82:333–335PubMedCrossRefPubMedCentralGoogle Scholar
  229. Sebastian S, Touchburn SP, Chavez ER (1998) Implications of phytic acid and supplemental microbial phytase in poultry nutrition: a review. World Poult Sci J 54:27–47CrossRefGoogle Scholar
  230. Segueilha L, Lambrechts C, Boze H, Moulin G, Galzy P (1992) Purification and properties of the phytase from chwanniomyces castellii. J Ferment Bioeng 74:7–11CrossRefGoogle Scholar
  231. Selle PH, Ravindran V (2008) Phytate degrading enzymes in pig nutrition. Livest Sci 113:99–122CrossRefGoogle Scholar
  232. Selle PH, Ravindran V, Caldwell RA, Bryden WL (2003) Phytate and phytase: consequences for protein utilization. Nutr Res Rev 13:255–278CrossRefGoogle Scholar
  233. Shah V, Parekh LJ (1990) Phytase from Klebsiella sp. PG-2- purification and properties. Indian J Biochem Biophys 27:98–102PubMedGoogle Scholar
  234. Shamsuddin AM, Baten A, Lalwani ND (1992) Effects of inositol hexaphosphate on growth and differentiation in K-56 erythroleukemia cell line. Cancer Lett 64:195–202PubMedCrossRefGoogle Scholar
  235. Shao N, Huang H, Meng K (2008) Cloning, expression, and characterization of a new phytase from the phytopathogenic bacterium Pectobacterium wasabiae DSMZ 18074. J Microbiol Biotechnol 18(7):1221–1226PubMedGoogle Scholar
  236. Shears SB (1998) The versatility of inositol phosphates as cellular signals. Biochim Biophys Acta 1436:49–67PubMedCrossRefGoogle Scholar
  237. Shieh TR, Ware JH (1968) Survey of microorganisms for the production of extracellular phytase. Appl Microbiol 16:1348–1351PubMedPubMedCentralGoogle Scholar
  238. Shieh TL, Wodzlnski LJ, Ware JH (1969) Regulation of the formation of acid phosphatase by inorganic phosphate in Aspergillus ficuum. J Bacteriol 100:1161–1165PubMedPubMedCentralGoogle Scholar
  239. Shimizu M (1992) Purification and characterization of phytase from Bacillus subtilis (natto) N-77. Biosci Biotechnol Biochem 56:1266–1269CrossRefGoogle Scholar
  240. Shimizu M (1993) Purification and characterization of phytase and acid-phosphatase produced by Aspergillus-oryzae K1. Biosci Biotechnol Biochem 57(8):1364–1365CrossRefGoogle Scholar
  241. Shivanna GB, Venkateshwaran G (2014) Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation. Sci World J 2014:392615CrossRefGoogle Scholar
  242. Simon O, Igbasan F (2002) In vitro properties of phytase from various microbial origins. Int J Food Sci Technol 37:813–822CrossRefGoogle Scholar
  243. Simons PCM, Versteegh HAJ, Jongbloed AW et al (1990) Improvement of phosphorus availability by microbial phytase in broilers Schwanniomyces castellii and pigs. Brit J Nutr 64:525–540PubMedCrossRefGoogle Scholar
  244. Singh B, Kunze G, Satyanarayana T (2011) Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol Mol Biol Rev 6(3):69–87Google Scholar
  245. Singh B, Satyanarayana T (2006) A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium. J Appl Microbial 101(2):344–352CrossRefGoogle Scholar
  246. Singh B, Satyanarayana T (2008) A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium. J Appl Microbiol 101(2):344–352CrossRefGoogle Scholar
  247. Singh B, Satyanarayana T (2010) Plant growth promotion by an extracellular HAP-phytase of a thermophilic mold Sporotrichum thermophile. Appl Biochem Biotechnol 160(5):1267–1276PubMedCrossRefGoogle Scholar
  248. Singh B, Satyanarayana T (2011) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17(2):93–103PubMedCrossRefPubMedCentralGoogle Scholar
  249. Singh N, Dahiya S, Poonia S (2008) Phytase: application in food and feed industries. Proc. National Seminar on Food Safety and Quality held at Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar-125001, Haryana, India. p 161–166Google Scholar
  250. Siren M, Linne L, Persson L (1991) Pharmacological effects of d-myo-inositol-1,2,6-trisphosphate. In: Reitz AB (ed) Inositol phosphates and derivatives. Synthesis, biochemistry and therapeutic potential. American Chemical Society, Washington, DC, pp 103–110CrossRefGoogle Scholar
  251. Skoglund E, Carlsson NG, Sandberg AS (1997) Determination of isomers of inositol mono to hexaphosphates in selected foods and intestinal contents using high-performance ion chromatography. J Agric Food Chem 45:431–436CrossRefGoogle Scholar
  252. Soni SK, Khire JM (2007) Production and partial characterization of two types of phytase from Aspergillus niger NCIM 563 under submerged fermentation conditions. World J Microbiol Biotechnol 23:1585–1593CrossRefGoogle Scholar
  253. Spitzer LS, Philips PH (1972) Phytase and alkaline phosphatase activities in intestinal mucosae of rat, chicken, calf and man. Biochim Biophys Acta 268:442–452CrossRefGoogle Scholar
  254. Sreeramulu G, Srinivasa DS, Nand K, Joseph R (1996) Lactobacillus amylovorus as a phytase producer in submerged culture. Lett Appl Microbiol 23:385–388CrossRefGoogle Scholar
  255. Srivastava BIS (1964) The effect of gibberellic acid on ribonuclease and phytase activity of germinating barley seeds. Can J Bot 42:1303–1305CrossRefGoogle Scholar
  256. Stockmann C, Losen M, Dahlems U, Knocke C, Gellissen G, Buchs J (2003) Effect of oxygen supply on passaging, stabilising and screening of recombinant Hansenula polymorpha production strains in test tube cultures. FEMS Yeast Res 2:195–205CrossRefGoogle Scholar
  257. Sunita K, Kim YO, Lee JK, Oh TK (2000) Statistical optimization of seed and induction conditions to enhance phytase production by recombinant Escherichia coli. Biochem Eng J 5:51–56CrossRefGoogle Scholar
  258. Sunitha K, Lee JK, Oh TK (1999) Optimization of medium components for phytase production by E. coli using response surface methodology. Bioprocess Eng 21:477–481Google Scholar
  259. Sutardi M, Buckle KA (1988) Characterization of extra and intracellular phytase from Rhizopus oligosporus used in tempeh production. Int J Food Microbiol 6:67–69PubMedCrossRefGoogle Scholar
  260. Suzuki U, Yoshimura K, Takaishi M (1907) Ueber ein enzym “Phytase” das “Anhydro-oxy-methylen diphosphorsaure” spaltet. Tokyo Imp Univ Coll Agric Bull 7:503–512Google Scholar
  261. Takanobu H (2002) Novel functions and applications of trehalose. Pure Appl Chem 74:1263–1269CrossRefGoogle Scholar
  262. Tambe SM, Kaklij GS, Kelkar SM, Parekh LJ (1994) Two distinct molecular forms of phytase from Klebsiella aerogenes: evidence for unusually small active enzyme peptide. J Ferment Bioeng 77:23–27CrossRefGoogle Scholar
  263. Tomschy A, Brugger R, Lehmann M, Svendsen A, Vogel K, Kostrewa D (2002) Engineering of phytase for improved activity at low pH. Appl Environ Microbiol 68:1907–1913PubMedCrossRefPubMedCentralGoogle Scholar
  264. Touati E, Danchin A (1987) The structure of the promoter and amino terminal region of the pH 2.5 acid phosphatase structural gene (appA) of Escherichia coli-a negative control of transcription mediated by cyclic-AMP. Biochimie 69:215–221PubMedCrossRefGoogle Scholar
  265. Tran TT, Mamo G, Mattiasson B, Hatti-Kaul R (2010) A thermostable phytase from Bacillus sp. MD2: cloning, expression and high-level production in Escherichia coli. J Ind Microbiol Biotechnol 37:279–287PubMedCrossRefGoogle Scholar
  266. Tran TT, Hatti-Kaul R, Dalsgaard S, Yu S (2011) A simple and fast kinetic assay for phytases using phytic acid–protein complex as substrate. Anal Biochem 410:177–184PubMedCrossRefGoogle Scholar
  267. Tseng YH, Fang TJ, Tseng SM (2000) Isolation and characterization of a novel phytase from Penicillium simplicissimum. Folia Microbiol 45:121–127CrossRefGoogle Scholar
  268. Tyagi PK, Verma SVS (1998) Phytate phosphorus content of some common poultry feed stuffs. Indian J Poult Sci 33:86–88Google Scholar
  269. Tye AJ, Siu FKY, Leung TYC, Lim BL (2002) Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl Microbiol Biotechnol 59:190–197PubMedCrossRefGoogle Scholar
  270. Ullah AHJ (1988) Production, rapid purification and catalytic characterization of extracellular phytase from Aspergillus ficuum. Prep Biochem 18:443–458PubMedGoogle Scholar
  271. Ullah AHJ, Cummins BJ (1987) Purification, N-terminal amino acid sequence and characterisation of pH 2.5 optimum acid phosphatases (E.C.3.1.3.2) from Aspergillus ficuum. Prep Biochem 17:397–422PubMedGoogle Scholar
  272. Ullah AHJ, Cummins BJ (1988) Aspergillus ficuum extracellular pH 6.0 optimum acid phosphatase: purification, N-terminal amino acid sequence and biochemical characterization. Prep Biochem 18:37–65PubMedGoogle Scholar
  273. Ullah AHJ, Dischinger HC (1993) Aspergillus ficuum phytase: complete primary structure elucidation by chemical sequencing. Biochem Biophys Res Commun 192:747–753PubMedCrossRefGoogle Scholar
  274. Ullah AHJ, Gibson DM (1987) Extracellular phytase (E.C.3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization. Prep Biochem 17:63–91PubMedGoogle Scholar
  275. Ullah AHJ, Mullaney EJ (1996) Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase. Biochem Biophys Res Commun 227:311–317PubMedCrossRefGoogle Scholar
  276. Ullah AHJ, Phillippy BQ (1994) Substrate selectivity in Aspergillus ficuum phytase and acid phosphatases using myo-inositol phosphates. J Agric Food Chem 42:423–425CrossRefGoogle Scholar
  277. Ullah AHJ, Sethumadhavan K (2003) PhyA gene product of Aspergillus ficuum and Peniophora lycii produces dissimilar phytases. Biochem Biophy Res Commun 303:463–468CrossRefGoogle Scholar
  278. Ullah AHJ, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Austin- Phillips S (2003) Fungal phyAgene expressed in potato leaves produces active and stable phytase. Biochem Biophys Res Commun 306:603–609PubMedCrossRefGoogle Scholar
  279. Van Etten RL, Davidson R, Stevis PE, MacArthur H, Moore DL (1991) Covalent structure, disulfide bonding, and identification of reactive surface and active site residues of human prostatic acid phosphatase. J Biol Chem 266:2313–2319PubMedGoogle Scholar
  280. Van Hartingsveldt W (1993) Cloning, characterization and over expression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene 127:87–94PubMedCrossRefGoogle Scholar
  281. Vats P, Banerjee UC (2002) Studies on the production of phytase by a newly isolated strain of Aspergillus nigervan teighamobtained from rotten wood logs. Process Biochem 38:211–217CrossRefGoogle Scholar
  282. Vats P, Banerjee UC (2004) Production studies and catalytic properties of phytases (myo-inositol hexakis phosphate phosphohydrolases): an overview. Enzym Microb Technol 35:3–14CrossRefGoogle Scholar
  283. Vats P, Banerjee UC (2005) Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. J Ind Microbiol Biotechnol 32:141–147PubMedCrossRefGoogle Scholar
  284. Veum TL, Ellersieck MR (2008) Effect of low doses of Aspergillus niger phytase on growth performance, bone strength, and nutrient absorption and excretion by growing and finishing swine fed corn-soybean meal diets deficient in available phosphorus and calcium. J Anim Sci 86:858–870PubMedCrossRefGoogle Scholar
  285. Veum TL, Ledoux DR, Raboy V, Ertl DS (2001) Low-phytic acid corn improves nutrient utilization for growing pigs. J Anim Sci 79:2873–2880PubMedCrossRefGoogle Scholar
  286. Vohra A, Satyanarayana T (2001) Phytase production by the yeast, Pichia anomala. Biotechnol Lett 23(7):551–554CrossRefGoogle Scholar
  287. Vohra A, Satyanarayana T (2002) Purification and characterization of a thermostable and acid-stable phytase from Pichia anomala. World J Microbiol Biotechnol 18:687–691CrossRefGoogle Scholar
  288. Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 23:29–60PubMedCrossRefGoogle Scholar
  289. Vohra A, Rastogi SK, Satyanarayana T (2006) Amelioration in growth and phosphorus assimilation of poultry birds using cell-bound phytase of Pichia anomala. World J Microbiol Biotechnol 22:553–558CrossRefGoogle Scholar
  290. Vucenik I, Shamsuddin AM (2003) Cancer inhibition by inositol hexaphosphate (IP6) and inositol: from laboratory to clinic. J Nutr 133:3778–3784CrossRefGoogle Scholar
  291. Wodzinski RJ, Ullah AHJ (1996) Phytase. Adv Appl Microbiol 42:263–303PubMedCrossRefGoogle Scholar
  292. Woyengo TA, Nyachoti CM (2013) Review: anti-nutritional effects of phytic acid in diets for pigs and poultry current knowledge and directions for future research. Can J Anim Sci 93:921CrossRefGoogle Scholar
  293. Wyss M, Brugger R, Kronenberger A, Remy R et al (1999) Biochemical characterization of fungal phytases (myo-inositolhexakisphosphate- phosphohydrolases): catalytic properties. Appl Environ Microbiol 65:367–373PubMedPubMedCentralGoogle Scholar
  294. Wyss M, Pasamontes L, Remy R, Kohler J, Kusznir E, Gadient M, Muller F, van Loon APGM (1998) Comparison of the thermostability properties of three acid phosphatases from molds: aspergillus fumigatus phytase, A. nigerphytase, and A. nigerpH 2.5 acid phosphatase. Appl Environ Microbiol 64:4446–4451PubMedPubMedCentralGoogle Scholar
  295. Xavier EG, Cromwell GL, Lindemann MD (2003) Phytase additions to conventional orlow-phytate corn-soybean meal diets on phosphorus balance in growing pigs. J Anim Sci 81(1):250–258Google Scholar
  296. Xiao K, Harrison M, Wang ZY (2005) Transgenic expression of a novel M. truncatula phytase gene results in improving acquisition of organic phosphorus by Arabidopsis. Planta 222:27–36PubMedCrossRefGoogle Scholar
  297. Xiong AS, Yao QH, Peng RH, Zhang Z, Xu F, Liu JG, Han PL, Chen JM (2006) High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol 72(5):1039–1047PubMedCrossRefGoogle Scholar
  298. Yamamoto S, Minoda Y, Yamada K (1972) Chemical and physicochemical properties of phytase from Aspergillus terreus. Agric Biol Chem 36:2097–2103CrossRefGoogle Scholar
  299. Yang G, Shamsuddin AM (1995) IP-6-induced growth inhibition and differentiation of HT-29 human colon cancer cells: involvement of intracellular inositol phosphates. Anticancer Res 15:2479–2488PubMedGoogle Scholar
  300. Yang WJ, Matsuda Y, Sano S, Masutani H, Nakagawa H (1991) Purification and characterization of phytase from rat intestinal mucosa. Biochim Biophys Acta 1075:75–82PubMedCrossRefGoogle Scholar
  301. Yanke LJ, Bae HD, Selinger LB, Cheng KJ (1998) Phytase activity of anaerobic ruminal bacteria. Microbiology 144:1565–1573PubMedCrossRefGoogle Scholar
  302. Yao B, Thang C, Wang J, Fan Y (1998) Recombinant Pichia pastoris over expressing bioactive phytase. Sci Chin 41:330–336CrossRefGoogle Scholar
  303. Yao MZ, Zhang YH, Lu WL, Hu MQ, Wang W, Liang AH (2012) Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol 112(1):1–14PubMedCrossRefGoogle Scholar
  304. Yoon SJ, Choi YJ, Min HK, Cho KK, Kim JW, Lee SC, Jung YH (1996) Isolation and identification of phytase producing bacterium. Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzym Microb Technol 18:449–454CrossRefGoogle Scholar
  305. Yu S, Cowieson A, Gilbert C, Plumstead P, Dalsgaard S (2012) Interactions of phytate andmyo-inositol phosphate esters (IP1-5) including IP5 isomers with dietary protein and iron and inhibition of pepsin. J Anim Sci 90:1824–1832PubMedCrossRefGoogle Scholar
  306. Zamudio M, Gonzalez A, Bastarrachea F (2002) Regulation of Raoultella terrigena comb.nov. phytase expression. Can J Microbiol 48:71–81PubMedCrossRefGoogle Scholar
  307. Zeng H, Yao B, Zhou WH, Fan ZY (2001) Advances in microbial phytase research. J Aqua Chin 15:87Google Scholar
  308. Zhang S, Reddy MS, Kokalis Burelle N, Wells LW (2001) Lack of induced systemic resistance in peanut to late leaf spot disease by plant growth-promoting rhizo bacteria and chemical elicitors. Plant Dis 85:879–884CrossRefGoogle Scholar
  309. Zyla M, Mika B, Stodolak A, Wikiera J, Koreleski S, Swiatkiewicz (2004) Towards complete dephosphorylation and total conversion of phytates in poultry feed. Poult Sci 83:1175–1186PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Namita Singh
    • 1
  • Sonia Kuhar
    • 1
  • Kanu Priya
    • 1
  • Rajneesh Jaryal
    • 1
  • Rakesh Yadav
    • 1
  1. 1.Microbial Biotechnology Laboratory, Department of Bio & Nano TechnologyGuru Jambheshwar University of Science & TechnologyHisarIndia

Personalised recommendations