Advertisement

Anthrax Bacterium: Its Etiology and Possible Therapeutics Against Cancer

  • Rekha Khandia
  • Ashok Munjal
Chapter

Abstract

Anthrax is an ancient disease caused by Bacillus anthracis and leads to animal and human deaths. It has imparted very important role in history of science by becoming the first bacterium to be observed under microscope, isolated in pure culture and used in attenuated vaccine and became the base of Koch’s famous postulates about germs. The bacterium contains two megaplasmids pXO1 (181 kb), encoding for three secretary toxins named as protective antigen (PA), lethal factor (LF) and edema factor (EF), and pXO2 (96 kb) encoding for anti-phagocytic capsule. The expression of genes is under the control of several cis and trans locating genetic elements and environmental factors. Present chapter provides the detailed insight to the structure and function of different toxins produced by B. anthracis bacterium including their mode of action. The lethal toxin enzymatically cleaves mitogen-activated protein kinases (MEKs), and edema toxin raises the amount of intracellular cAMP. Both toxins have important role in cellular signalling and cell survival pathways, and the same property may be exploited to cure several diseases related to propagation of cells like cancer. How different components of bacterium like toxins and receptors can be manoeuvred to find therapeutics value against cancer is being described. In summary, anthrax is a bacterium which is a life-threatening organism but tactically can be turned into life saviour.

References

  1. Abergel RJ, Wilson MK, Arceneaux JE et al (2006) Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc Natl Acad Sci U S A 103:18499–18503CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abi-Habib RJ, Urieto JO, Liu S, Leppla SH et al (2005) BRAF status and mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 activity indicate sensitivity of melanoma cells to anthrax lethal toxin. Mol Cancer Ther 4:1303–1310CrossRefPubMedGoogle Scholar
  3. Abrami L, Liu S, Cosson P et al (2003) Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol 160:321–328CrossRefPubMedPubMedCentralGoogle Scholar
  4. Abrami L, Lindsay M, Parton RG et al (2004) Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. J Cell Biol 166:645–651CrossRefPubMedPubMedCentralGoogle Scholar
  5. Abrami L, Leppla SH, Van der Goot FG (2006) Receptor palmitoylation and ubiquitination regulate anthrax toxin endocytosis. J Cell Biol 172(2):309–320CrossRefPubMedPubMedCentralGoogle Scholar
  6. Abrami L, Bischofberger M, Kunz B, Groux R, van der Goot FG (2010) Endocytosis of the anthrax toxin is mediated by clathrin, actin and unconventional adaptors. PLoS Pathog 6:e1000792.  https://doi.org/10.1371/journal.ppat.1000792 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Abshire TG, Brown JE, Ezzell JW (2005) Production and validation of the use of gamma phage for identification of Bacillus anthracis. J Clin Microbiol 43:4780–4788CrossRefPubMedPubMedCentralGoogle Scholar
  8. Allured VS, Case LM, Leppla SH, McKay DB (1985) Crystallization of the protective antigen protein of Bacillus anthracis. J Biol Chem 260:5012–5013PubMedGoogle Scholar
  9. Arora N, Klimpel KR, Singh Y, Leppla SH (1992) Fusions of anthrax toxin lethal factor to the adp-ribosylation domain of pseudomonas exotoxin A are potent cytotoxins which are translocated to the cytosol of mammalian cells. J Biol Chem 267(22):15542–15548PubMedGoogle Scholar
  10. Bachran C, Gupta PK, Bachran S, Leysath CE et al (2014) Reductive methylation and mutation of an anthrax toxin fusion protein modulates its stability and cytotoxicity. Sci Rep 4:4754.  https://doi.org/10.1038/srep04754 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bell SE, Mavila A, Salazar R, Bayless KJ et al (2001) Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signalling. J Cell Sci 114:2755–2773PubMedGoogle Scholar
  12. Bhatnagar R, Batra S (2001) Anthrax toxins. Crit Rev Microb 27:167–200CrossRefGoogle Scholar
  13. Boll W, Ehrlich M, Collier RJ, Kirchhausen T (2004) Effects of dynamin inactivation on pathways of anthrax toxin uptake. Eur J Cell Biol 83:281–288CrossRefPubMedGoogle Scholar
  14. Bradley KA, Young JA (2003) Anthrax toxin receptor proteins. Biochem Pharmacol 65:309–314CrossRefPubMedGoogle Scholar
  15. Bragg TS, Robertson DL (1989) Nucleotide sequence and analysis of the lethal factor gene (lef) from Bacillus anthracis. Gene 81:45–54CrossRefPubMedGoogle Scholar
  16. Brown ER, Cherry WB (1955) Specific identification of Bacillus anthracis by means of a variant bacteriophage. J Infect Dis 96:34–39CrossRefPubMedGoogle Scholar
  17. Chaudhary A, Hilton MB, Seaman S, Haines DC et al (2012) TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell 21:212–226CrossRefPubMedPubMedCentralGoogle Scholar
  18. Coker PR, Smith KL, Fellows PF et al (2003) Bacillus anthracis virulence in guinea pigs vaccinated with anthrax vaccine adsorbed is linked to plasmid quantities and clonality. J Clin Microbiol 41:1212–1218CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cryan LM, Roger MS (2011) Targeting the anthrax receptors, TEM-8 and CMG-2, for anti-angiogenic therapy. Front Biosci 16:1574–1588CrossRefPubMedCentralGoogle Scholar
  20. Cullen M, Seaman S, Chaudhary A, Yang MY et al (2009) Host-derived tumor endothelial marker 8 promotes the growth of melanoma. Cancer Res 69(15):6021–6026CrossRefPubMedPubMedCentralGoogle Scholar
  21. Davies H, Bignell GR, Cox C, Stephens P et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954CrossRefGoogle Scholar
  22. Deng WG, Jayachandran G, Wu G, Xu K et al (2007) Tumor-specific activation of human telomerase reverses transcriptase promoter activity by activating enhancer-binding protein-2beta in human lung cancer cells. J Biol Chem 282(36):26460–26470CrossRefPubMedGoogle Scholar
  23. Dixon TC, Meselson M, Guillemin J, Hanna PC (1999) Anthrax. N Engl J Med 341:815–826CrossRefPubMedGoogle Scholar
  24. Dixon TC, Fadl AA, Koehler TM et al (2000) Early Bacillus anthracis–macrophage interactions: intracellular survival and escape. Cell Microbiol 2:453–463CrossRefPubMedGoogle Scholar
  25. Driks A (2002) Overview: development in bacteria: spore formation in Bacillus subtilis. Cell Mol Life Sci 59:389–391CrossRefPubMedGoogle Scholar
  26. Duan HF, Hu XW, Chen JL, Gao LH et al (2007) Antitumor activities of TEM8-Fc: an engineered antibody-like molecule targeting tumor endothelial marker 8. J Natl Cancer Inst 99:1551–1555CrossRefPubMedGoogle Scholar
  27. Duesbery NS, Woude GFV (1999) Anthrax toxins. Cell Mol Life Sci 55:1599–1609CrossRefPubMedGoogle Scholar
  28. Duesbery NS, Webb CP, Leppla SH, Gordon VM et al (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280:734–737CrossRefPubMedGoogle Scholar
  29. Elliott JL, Jeremy M, Collier RJ (2000) A quantitative study of the interactions of Bacillus anthracis edema factor and lethal factor with activated protective antigen. Biochemistry 39(22):6706–6713CrossRefPubMedGoogle Scholar
  30. Elwell CA, Dreyfus LA (2000) DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. Mol Microbiol 37:952–963CrossRefPubMedGoogle Scholar
  31. Etienne-Toumelin I, Sirard JC, Duflot E et al (1995) Characterisation of the Bacillus anthracis S-layer: cloning and sequencing of the structural gene. J Bacteriol 177:614–620CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fink SL, Bergsbaken T, Cookson BT (2008) Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc Natl Acad Sci U S A 105(11):4312–4317CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fouet A, Mesnage S, Tosi-Couture E, Gounon P, Mock M (1999) Bacillus anthracis surface: capsule and S-layer. J Appl Microbiol 87:251–255CrossRefPubMedGoogle Scholar
  34. Gloria B, Federica S, Philippe G, Terence M et al (2005) ATR/TEM8 is highly expressed in epithelial cells lining Bacillus anthracis’ three sites of entry: implications for the pathogenesis of anthrax infection. Am J Physiol 288:1402–1410CrossRefGoogle Scholar
  35. Gordon VM, Klimpel KR, Arora N et al (1995) Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect Immun 63(1):82–87PubMedPubMedCentralGoogle Scholar
  36. Guignot J, Mock M, Fouet A (1997) AtxA activates the transcription of genes harboured by both Bacillus anthracis virulence plasmids. FEMS Microbiol Lett 147:203–207CrossRefPubMedGoogle Scholar
  37. Hadjifrangiskou M, Chen Y, Koehler TM (2007) The alternative sigma factor sigma H is required for toxin gene expression by Bacillus anthracis. J Bacteriol 189:1874–1883CrossRefPubMedGoogle Scholar
  38. Hoover DL, Friedlander AM, Rogers LC et al (1994) Anthrax edema toxin differentially regulates lipopolysaccharide-induced monocyte production of tumor necrosis factor alpha and interleukin-6 by increasing intracellular cyclic AMP. Infect Immun 62:4432–4439PubMedPubMedCentralGoogle Scholar
  39. Hotchkiss KA, Basile CM, Spring SC, Bonuccelli G et al (2005) TEM8 expression stimulates endothelial cell adhesion and migration by regulating cell–matrix interactions on collagen. Exp Cell Res 305:133–144CrossRefPubMedGoogle Scholar
  40. Jayachandran R (2001) Anthrax: biology of Bacillus anthracis. Science 294:1810–1812CrossRefGoogle Scholar
  41. Jeong SY, Martchenko M, Cohen SN (2013) Calpain-dependent cytoskeletal rearrangement exploited for anthrax toxin endocytosis. Proc Natl Acad Sci U S A 110(42):E4007–E4015.  https://doi.org/10.1073/pnas.1316852110 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jinadasa RN, Bloom SE, Weiss RS, Duhamel GE (2011) Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. Microbiology 157:1851–1875CrossRefPubMedPubMedCentralGoogle Scholar
  43. Khandia R, Pattnaik B, Rajukumar K, Pateriya AK et al (2013) Evaluation of a protective antigen gene based SYBR green I real time PCR for detection of Bacillus anthracis in field samples. Indian J Anim Sci 83:118–123Google Scholar
  44. Khandia R, Bhatia S, Victoria C, Sood R, Dhama K (2014) Anthrax toxin receptors, functions and their possible use in therapeutics: a review. Asian J Anim Vet Adv 9(10):599–609CrossRefGoogle Scholar
  45. Khandia R, Pattnaik B, Rajukumar K, Pateriya A et al (2017) Anti-proliferative role of recombinant lethal toxin of Bacillus anthracis on primary mammary ductal carcinoma cells revealing its therapeutic potential. Oncotarget 8(22):35835–35847CrossRefPubMedPubMedCentralGoogle Scholar
  46. Klimpel KR, Arora N, Leppla SH (1994) Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol Microbiol 13(6):1093–1100CrossRefPubMedGoogle Scholar
  47. Kochi SK, Schaiva G, Mock M, Montecucco C (1994) Zn content of Bacillus anthracis lethal factor. FEMS Microbiol Lett 124:343–348CrossRefPubMedGoogle Scholar
  48. Koo HM, VanBrocklin M, McWilliams MJ et al (2002) Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase. Proc Natl Acad Sci U S A 99(5):3052–3057CrossRefPubMedPubMedCentralGoogle Scholar
  49. Labruyere E, Mock M, Ladant D, Michelson S et al (1990) Characterization of ATP and calmodulin-binding properties of a truncated form of Bacillus anthracis adenylate cyclase. Biochemistry 29:4922–4928CrossRefPubMedGoogle Scholar
  50. Lacy DB, Mourez M, Fouassier A, Collier RJ (2002) Mapping the anthrax protective antigen binding site on the lethal and edema factors. J Biol Chem 277(4):3006–3010CrossRefPubMedGoogle Scholar
  51. Lacy DB, Wigelsworth DJ, Scobie HM, Young JA, Collie RJ (2004) Crystal structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: an anthrax toxin receptor. Proc Natl Acad Sci U S A 101:6367–6372CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lalitha MK, Thomas MK (1997) Penicillin resistance in Bacillus anthracis. Lancet 349:1522–1532CrossRefPubMedGoogle Scholar
  53. Lee JY, Janes BK, Passalacqua KD et al (2007) Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. J Bacteriol 189:1698–1710CrossRefPubMedGoogle Scholar
  54. Little SF, Ivins BE (1999) Molecular pathogenesis of Bacillus anthracis infection. Microbes Infect 1(2):131–139CrossRefPubMedGoogle Scholar
  55. Liu S, Netzel AS, Birkedal HH, Leppla SH (2000) Tumor cell-selective cytotoxicity of matrix metalloproteinase-activated anthrax toxin. Cancer Res 60(21):6061–6067PubMedGoogle Scholar
  56. Liu S, Bugge TH, Leppla SH (2001) Targeting of tumor cells by cell surface urokinase plasminogen activator-dependent anthrax toxin. J Biol Chem 276(21):17976–17984CrossRefPubMedGoogle Scholar
  57. Liu S, Redeye V, Kuremsky JG, Kuhnen M et al (2005) Intermolecular complementation achieves high-specificity tumor targeting by anthrax toxin. Nat Biotechnol 23(6):725–730CrossRefPubMedPubMedCentralGoogle Scholar
  58. Liu S, Wang H, Currie BM, Molinolo A et al (2008) Matrix metalloproteinase-activated anthrax lethal toxin demonstrates high potency in targeting tumor vasculature. J Biol Chem 283(1):529–540CrossRefPubMedGoogle Scholar
  59. Liu S, Crown D, Miller RS, Moayeri M et al (2009) Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo. Proc Natl Acad Sci U S A 106:12424–12429CrossRefPubMedPubMedCentralGoogle Scholar
  60. Merka V, Patocka J (2002) Anthrax: an important agent of biological terrorism. Nederl Milit Geneesk 55:142–145Google Scholar
  61. Milne JC, Furlong D, Hanna PC et al (1994) Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem 269:20607–20612PubMedGoogle Scholar
  62. Mosser EM, Rest RF (2006) The Bacillus anthracis cholesterol-dependent cytolysin, anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol 6:56CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69(3):562–573CrossRefPubMedGoogle Scholar
  64. Nanda A, Carson-Walter EB, Seaman S, Barber TD et al (2004) TEM8 interacts with the cleaved C5 domain of collagen alpha 3(VI). Cancer Res 64(3):817–820CrossRefPubMedGoogle Scholar
  65. Pannifer AD, Wong TY, Schwarzenbacher R, Renatus M et al (2001) Crystal structure of the anthrax lethal factor. Nature 414:229–233CrossRefPubMedGoogle Scholar
  66. Park JM, Greten FR, Li ZW, Karin M (2002) Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297:2048–2051CrossRefPubMedGoogle Scholar
  67. Park JM, Greten FR, Wong A, Westrick RJ et al (2005) Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis –CREB and NF-κB as key regulators. Immunity 23(3):19–329CrossRefGoogle Scholar
  68. Parry JM, Turnbull PCB, Gibson JR (1983) A color atlas of Bacillus species. Wolfe Medical, London, p 272Google Scholar
  69. Pasteur L (1881) De l'attenuation des virus et de leur retour a la virulence. C R Acad Sci Bulg 92:429–435Google Scholar
  70. Pellizzari R, Recchi C, Napolitani G, Mock M, Montecucco C (1999) Anthrax lethal factor cleaves the N-terminus of MAPKKS and induces tyrosine/threonine phosphorylation of MAPKS in cultured macrophages. J Appl Microbiol 87:288CrossRefPubMedGoogle Scholar
  71. Petosa C, Liddington RC (1996) The anthrax toxin. In: Parker MW (ed) Protein toxin structure. R.G. Landes Company Austin, Texas, pp 97–121CrossRefGoogle Scholar
  72. Petosa C, Collier RJ, Klimpel KR et al (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385:8833–8838CrossRefGoogle Scholar
  73. Phillips DD, Fattah RJ, Crown D et al (2013) Engineering anthrax toxin variants that exclusively form octamers and their application to targeting tumors. J Biol Chem 288:9058–9065CrossRefPubMedPubMedCentralGoogle Scholar
  74. Quinn CP, Chaudhary VK, Leppla SH (1991) The carboxyl-terminal end of protective antigen is required for receptor binding and anthrax toxin activity. J Biol Chem 266:15493–15497PubMedGoogle Scholar
  75. Rayment I (1997) Reductive alkylation of lysine residues to alter crystallization properties of proteins. Methods Enzymol 276:171–179CrossRefPubMedGoogle Scholar
  76. Read TD, Peterson SN, Tourasse N, Baillie LW et al (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86CrossRefPubMedGoogle Scholar
  77. Reeves CV, Wang X, Charles-Horvath PC, Vink JY et al (2012) Anthrax toxin receptor 2 functions in ECM homeostasis of the murine reproductive tract and promotes MMP activity. PLoS One 7:e34862CrossRefPubMedPubMedCentralGoogle Scholar
  78. Reig N, Jiang A, Couture R et al (2008) Maturation modulates caspase-1-independent responses of dendritic cells to anthrax lethal toxin. Cell Microbiol 10:1190–1207CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ruan Z, Yang Z, Wang Y, Wang H et al (2009) DNA vaccine against tumor endothelial marker 8 inhibits tumor angiogenesis and growth. J Immunother 32(5):486–491CrossRefPubMedGoogle Scholar
  80. Scobie HM, Rainey GJ, Bradley KA, Young JA (2003) Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci U S A 100:5170–5174CrossRefPubMedPubMedCentralGoogle Scholar
  81. Singh Y, Klimpel KR, Quinn CP et al (1991) The carboxyl-terminal end of protective antigen is required for receptor binding and anthrax toxin activity. J Biol Chem 266:15493–15497PubMedGoogle Scholar
  82. Singh Y, Klimpel KR, Goel S, Swain PK, Leppla SH (1999) Oligomerization of anthrax toxin protective antigen and binding of lethal factor during endocytic uptake into mammalian cells. Infect Immun 67:1853–1859PubMedPubMedCentralGoogle Scholar
  83. Sneath PHA (1986) Endospore-forming gram-positive rods and cocci. Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, p 1131Google Scholar
  84. Stepanov AV, Marinin LI, Pomerantsev AP, Staritsin NA (1996) Development of novel vaccines against anthrax in man. J Biotechnol 44:155–160CrossRefPubMedGoogle Scholar
  85. Turnbull PCB (1996) Bacillus. In: Baron S (ed) Medical Microbiology, 4th edn. The University of Texas Medical Branch at Galveston, Galveston, pp 233–246Google Scholar
  86. Turnbull PC (1999) Definitive identification of Bacillus anthracis—review. J Appl Microbiol 87:237–240CrossRefPubMedGoogle Scholar
  87. Uchida I, Hashimoto K, Terakado N (1986) Virulence and immunogenicity in experimental animals of Bacillus anthracis strains harbouring or lacking 110 MDa and 60 MDa plasmids. J Gen Microbiol 132:557–559PubMedGoogle Scholar
  88. Vale AD, Cabanes D, Sousa S (2016) Bacterial toxins as pathogen weapons against phagocytes. Front Microbiol 7:42PubMedPubMedCentralGoogle Scholar
  89. Varshavsky A (2011) The N-end rule pathway and regulation by proteolysis. Protein Sci 20(8):1298–1345CrossRefPubMedPubMedCentralGoogle Scholar
  90. Vitale G, Pellizzari R, Recchi C, Napolitani G et al (1998) Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem Biophys Res Commun 248:706–711CrossRefPubMedGoogle Scholar
  91. Vitale G, Pellizzari R, Recchi C, Napolitani G et al (1999) Anthrax lethal factor cleaves the N-terminus of MAPKKS and induces tyrosine/threonine phosphorylation of MAPKS in cultured macrophages. J Appl Microbiol 248(3):706–711Google Scholar
  92. Wei W, Lu Q, Chaudry GJ et al (2006) The LDL receptor-related protein LRP6 mediates internalization and lethality of anthrax toxin. Cell 124(6):1141–1154CrossRefPubMedGoogle Scholar
  93. Wein AN, Peters DE, Valivullah Z, Hoover BJ et al (2015) An anthrax toxin variant with an improved activity in tumor targeting. Sci Rep 5:16267.  https://doi.org/10.1038/srep16267 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Welkos SL, Lowe JR, Eden-Mccutchan F, Vodkin M et al (1988) Sequence and analysis of the DNA encoding protective antigen of Bacillus anthracis. Gene 69:287–300CrossRefPubMedGoogle Scholar
  95. Werner E, Kowalczyk AP, Faundez V (2006) Anthrax toxin receptor 1/tumor endothelium marker 8 mediates cell spreading by coupling extracellular ligands to the actin cytoskeleton. J Biol Chem 281:23227–23236CrossRefPubMedGoogle Scholar
  96. Whittaker CA, Hynes RO (2002) Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13(10):3369–3387CrossRefPubMedPubMedCentralGoogle Scholar
  97. Wigelsworth DJ, Krantz BA, Christensen KA et al (2004) Binding stoichiometry and kinetics of the interaction of a human anthrax toxin receptor, CMG2, with protective antigen. J Biol Chem 279:23349–23356CrossRefPubMedGoogle Scholar
  98. Yang MY, Chaudhary A, Seaman S et al (2010) The cell surface structure of tumor endothelial marker 8 (TEM8) is regulated by the actin cytoskeleton. Biochem Biophys Acta 1813(1):39–49CrossRefPubMedGoogle Scholar
  99. Zawadzka AM, Abergel RJ, Nichiporuk R et al (2009) Siderophore-mediated iron acquisition systems in Bacillus cereus: identification of receptors for anthrax virulence-associated petrobactin. Biochemistry 48:3645–3657CrossRefPubMedPubMedCentralGoogle Scholar
  100. Zheng S, Zhang G, Li J, Chen PR (2014) Monitoring endocytic trafficking of anthrax lethal factor by precise and quantitative protein labelling. Angew Chem Int Ed Eng 53:6449–6453CrossRefGoogle Scholar
  101. Zhuo W, Tao G, Zhang L, Chen Z (2013) Vector-mediated selective expression of lethal factor, a toxic element of Bacillus Anthracis, damages A549 cells via inhibition of MAPK and AKT pathways. Int J Med Sci 10(3):292–298CrossRefPubMedPubMedCentralGoogle Scholar
  102. Zwartouw HT, Smith H (1956) Polyglutamic acid from Bacillus anthracis grown in vivo: structure and aggressin activity. Biochem J 63:437–442CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rekha Khandia
    • 1
  • Ashok Munjal
    • 1
  1. 1.Department of Biochemistry and GeneticsBarkatullah UniversityBhopalIndia

Personalised recommendations