Advertisement

Clinical Aspects: Colorectal Cancer

  • Hirofumi YamamotoEmail author
  • Masaki Mori
Chapter

Abstract

Colorectal cancer (CRC) is one of the most common cancers worldwide. Currently, postoperative adjuvant chemotherapy is recommended for node-positive stage III patients, but not for those who are node-negative, with stage II disease. However, a systematic meta-analysis revealed that the presence of micrometastases in regional lymph nodes (LNs) was associated with poor survival in 4087 patients with node-negative CRC. Unfortunately, the majority of studies used in that meta-analysis were performed retrospectively. In a prospective clinical trial, we revealed that the micrometastasis volume, as determined by qRT-PCR of carcinoembryonic antigen (CEA) mRNA, is a useful marker with which to stratify patients at risk of recurrence of stage II CRC. Furthermore, our quantitative data illustrated the concept that stage II CRC represents a transitional stage between localized (stage I) and a more expansive (stage III) disease. At the cellular level, the intermediary stage II disease involves CRC tumors that continuously “seed” micrometastases in LNs, which then increases the risk of tumor recurrence.

The one-step nucleic acid amplification (OSNA) assay is a novel and rapid technique with which to detect cytokeratin (CK) 19 mRNA using reverse transcription loop-mediated isothermal amplification (RT-LAMP). Using OSNA, a prospective study showed that rates of upstaging in 124 node-negative patients (pN0) with pStages I, IIA, IIB, and IIC were 2.0%, 17.7%, 12.5%, and 25%, respectively. These findings suggest that OSNA may usefully substitute for RT-PCR of CEA mRNA owing to its ease of use and rapidity.

Keywords

Micrometastasis CEA CK19 OSNA Colorectal cancer 

References

  1. 1.
    Weitz J, Koch M, Debus J, Hohler T, Galle PR, Buchler MW. Colorectal cancer. Lancet. 2005;365(9454):153–65.PubMedCrossRefGoogle Scholar
  2. 2.
    Nelson H, Petrelli N, Carlin A, Couture J, Fleshman J, Guillem J, et al. Guidelines 2000 for colon and rectal cancer surgery. J Natl Cancer Inst. 2001;93(8):583–96.PubMedCrossRefGoogle Scholar
  3. 3.
    Sobin LH, Gospodarowicz MK, Wittekind C. UICC international union against cancer. In: TNM classification of malignant tumors. 7th ed. New York, NY: Wiley-Blackwell; 2009.Google Scholar
  4. 4.
    de Gramont ABC, Navarro M, et al. Oxaliplatin/5FU/LV in the adjuvant treatment of stage II and stage III colon cancer: efficacy results with a median follow-up of 4 years. J Clin Oncol. 2005;23:246s.CrossRefGoogle Scholar
  5. 5.
    Weitz J, Kienle P, Magener A, Koch M, Schrodel A, Willeke F, et al. Detection of disseminated colorectal cancer cells in lymph nodes, blood and bone marrow. Clin Cancer Res. 1999;5(7):1830–6.PubMedGoogle Scholar
  6. 6.
    Miyake Y, Yamamoto H, Fujiwara Y, Ohue M, Sugita Y, Tomita N, et al. Extensive micrometastases to lymph nodes as a marker for rapid recurrence of colorectal cancer: a study of lymphatic mapping. Clin Cancer Res. 2001;7(5):1350–7.PubMedGoogle Scholar
  7. 7.
    Benson AB 3rd, Schrag D, Somerfield MR, Cohen AM, Figueredo AT, Flynn PJ, et al. American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J Clin Oncol. 2004;22(16):3408–19.PubMedCrossRefGoogle Scholar
  8. 8.
    Labianca R, Nordlinger B, Beretta GD, Brouquet A, Cervantes A. Primary colon cancer: ESMO Clinical Practice Guidelines for diagnosis, adjuvant treatment and follow-up. Ann Oncol. 2010;21(Suppl 5):v70–7.PubMedCrossRefGoogle Scholar
  9. 9.
    O’Connor ES, Greenblatt DY, LoConte NK, Gangnon RE, Liou JI, Heise CP, et al. Adjuvant chemotherapy for stage II colon cancer with poor prognostic features. J Clin Oncol. 2011;29(25):3381–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Deans GT, Parks TG, Rowlands BJ, Spence RA. Prognostic factors in colorectal cancer. Br J Surg. 1992;79(7):608–13.PubMedCrossRefGoogle Scholar
  11. 11.
    Kronberg U, Lopez-Kostner F, Soto G, Zuniga A, Wistuba I, Miranda V, et al. Detection of lymphatic micrometastases in patients with stages I and II colorectal cancer: impact on five-year survival. Dis Colon Rectum. 2004;47(7):1151–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Cutait R, Alves VA, Lopes LC, Cutait DE, Borges JL, Singer J, et al. Restaging of colorectal cancer based on the identification of lymph node micrometastases through immunoperoxidase staining of CEA and cytokeratins. Dis Colon Rectum. 1991;34(10):917–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Greenson JK, Isenhart CE, Rice R, Mojzisik C, Houchens D, Martin EW Jr. Identification of occult micrometastases in pericolic lymph nodes of Duke’s B colorectal cancer patients using monoclonal antibodies against cytokeratin and CC49. Correlation with long-term survival. Cancer. 1994;73(3):563–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Jeffers MD, O’Dowd GM, Mulcahy H, Stagg M, O’Donoghue DP, Toner M. The prognostic significance of immunohistochemically detected lymph node micrometastases in colorectal carcinoma. J Pathol. 1994;172(2):183–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Adell G, Boeryd B, Franlund B, Sjodahl R, Hakansson L. Occurrence and prognostic importance of micrometastases in regional lymph nodes in Dukes’ B colorectal carcinoma: an immunohistochemical study. Eur J Surg. 1996;162(8):637–42.PubMedGoogle Scholar
  16. 16.
    Oberg A, Stenling R, Tavelin B, Lindmark G. Are lymph node micrometastases of any clinical significance in Dukes Stages A and B colorectal cancer? Dis Colon Rectum. 1998;41(10):1244–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Noguchi S, Hiratsuka M, Furukawa H, Aihara T, Kasugai T, Tamura S, et al. Detection of gastric cancer micrometastases in lymph nodes by amplification of keratin 19 mRNA with reverse transcriptase-polymerase chain reaction. Jpn J Cancer Res. 1996;87(6):650–4.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Noguchi S, Aihara T, Motomura K, Inaji H, Imaoka S, Koyama H. Detection of breast cancer micrometastases in axillary lymph nodes by means of reverse transcriptase-polymerase chain reaction. Comparison between MUC1 mRNA and keratin 19 mRNA amplification. Am J Pathol. 1996;148(2):649–56.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Matsumura M, Niwa Y, Kato N, Komatsu Y, Shiina S, Kawabe T, et al. Detection of alpha-fetoprotein mRNA, an indicator of hematogenous spreading hepatocellular carcinoma, in the circulation: a possible predictor of metastatic hepatocellular carcinoma. Hepatology. 1994;20(6):1418–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Mori M, Mimori K, Inoue H, Barnard GF, Tsuji K, Nanbara S, et al. Detection of cancer micrometastases in lymph nodes by reverse transcriptase-polymerase chain reaction. Cancer Res. 1995;55(15):3417–20.PubMedGoogle Scholar
  21. 21.
    Futamura M, Takagi Y, Koumura H, Kida H, Tanemura H, Shimokawa K, et al. Spread of colorectal cancer micrometastases in regional lymph nodes by reverse transcriptase-polymerase chain reactions for carcinoembryonic antigen and cytokeratin 20. J Surg Oncol. 1998;68(1):34–40.PubMedCrossRefGoogle Scholar
  22. 22.
    Noura S, Yamamoto H, Ohnishi T, Masuda N, Matsumoto T, Takayama O, et al. Comparative detection of lymph node micrometastases of stage II colorectal cancer by reverse transcriptase polymerase chain reaction and immunohistochemistry. J Clin Oncol. 2002;20(20):4232–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Bilchik AJ, Hoon DS, Saha S, Turner RR, Wiese D, DiNome M, et al. Prognostic impact of micrometastases in colon cancer: interim results of a prospective multicenter trial. Ann Surg. 2007;246(4):568–75; discussion 75–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Rahbari NN, Bork U, Motschall E, Thorlund K, Buchler MW, Koch M, et al. Molecular detection of tumor cells in regional lymph nodes is associated with disease recurrence and poor survival in node-negative colorectal cancer: a systematic review and meta-analysis. J Clin Oncol. 2012;30(1):60–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Schem C, Maass N, Bauerschlag DO, Carstensen MH, Loning T, Roder C, et al. One-step nucleic acid amplification-a molecular method for the detection of lymph node metastases in breast cancer patients; results of the German study group. Virchows Arch. 2009;454(2):203–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Tamaki Y, Akiyama F, Iwase T, Kaneko T, Tsuda H, Sato K, et al. Molecular detection of lymph node metastases in breast cancer patients: results of a multicenter trial using the one-step nucleic acid amplification assay. Clin Cancer Res. 2009;15(8):2879–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Yamamoto H, Sekimoto M, Oya M, Yamamoto N, Konishi F, Sasaki J, et al. OSNA-based novel molecular testing for lymph node metastases in colorectal cancer patients: results from a multicenter clinical performance study in Japan. Ann Surg Oncol. 2011;18(7):1891–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Noura S, Yamamoto H, Miyake Y, Kim B, Takayama O, Seshimo I, et al. Immunohistochemical assessment of localization and frequency of micrometastases in lymph nodes of colorectal cancer. Clin Cancer Res. 2002;8(3):759–67.PubMedGoogle Scholar
  29. 29.
    Croner RS, Geppert CI, Bader FG, Nitsche U, Spath C, Rosenberg R, et al. Molecular staging of lymph node-negative colon carcinomas by one-step nucleic acid amplification (OSNA) results in upstaging of a quarter of patients in a prospective, European, multicentre study. Br J Cancer. 2014;110(10):2544–50.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Banerjee SM, Williams NR, Davidson TI, El Sheikh S, Tran-Dang M, Davison S, et al. The use of onestep nucleic acid amplification (OSNA) and tumour related factors in the treatment of axillary breast cancer: a predictive model. Eur J Surg Oncol. 2016;42(5):641–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Yamamoto H, Tomita N, Inomata M, Furuhata T, Miyake Y, Noura S, et al. OSNA-assisted molecular staging in colorectal cancer: a prospective multicenter trial in Japan. Ann Surg Oncol. 2016;23(2):391–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Waldman SA, Hyslop T, Schulz S, Barkun A, Nielsen K, Haaf J, et al. Association of GUCY2C expression in lymph nodes with time to recurrence and disease-free survival in pN0 colorectal cancer. JAMA. 2009;301(7):745–52.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Messerini L, Cianchi F, Cortesini C, Comin CE. Incidence and prognostic significance of occult tumor cells in lymph nodes from patients with stage IIA colorectal carcinoma. Hum Pathol. 2006;37(10):1259–67.PubMedCrossRefGoogle Scholar
  34. 34.
    Koyanagi K, Bilchik AJ, Saha S, Turner RR, Wiese D, McCarter M, et al. Prognostic relevance of occult nodal micrometastases and circulating tumor cells in colorectal cancer in a prospective multicenter trial. Clin Cancer Res. 2008;14(22):7391–6.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Yamamoto H, Murata K, Fukunaga M, Ohnishi T, Noura S, Miyake Y, et al. Micrometastasis volume in lymph nodes determines disease recurrence rate of stage II colorectal cancer: a prospective multicenter trial. Clin Cancer Res. 2016;22(13):3201–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Andre T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350(23):2343–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Andre T, Boni C, Navarro M, Tabernero J, Hickish T, Topham C, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol. 2009;27(19):3109–16.PubMedCrossRefGoogle Scholar
  38. 38.
    Alix-Panabieres C, Riethdorf S, Pantel K. Circulating tumor cells and bone marrow micrometastasis. Clin Cancer Res. 2008;14(16):5013–21.PubMedCrossRefGoogle Scholar
  39. 39.
    Wikman H, Vessella R, Pantel K. Cancer micrometastasis and tumour dormancy. APMIS. 2008;116(7–8):754–70.PubMedCrossRefGoogle Scholar
  40. 40.
    Mimori K, Shinden Y, Eguchi H, Sudo T, Sugimachi K. Biological and molecular aspects of lymph node metastasis in gastro-intestinal cancer. Int J Clin Oncol. 2013;18(5):762–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Cottingham K. The single-cell scene. Anal Chem. 2004;76(13):235a–8a.PubMedGoogle Scholar
  42. 42.
    Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol. 2000;18(6):630–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, Lonnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21(7):1160–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Horvath A, Pakala SB, Mudvari P, Reddy SD, Ohshiro K, Casimiro S, et al. Novel insights into breast cancer genetic variance through RNA sequencing. Sci Rep. 2013;3:2256.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Liang F, Qu H, Lin Q, Yang Y, Ruan X, Zhang B, et al. Molecular biomarkers screened by next-generation RNA sequencing for non-sentinel lymph node status prediction in breast cancer patients with metastatic sentinel lymph nodes. World J Surg Oncol. 2015;13:258.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kaur H, Mao S, Shah S, Gorski DH, Krawetz SA, Sloane BF, et al. Next-generation sequencing: a powerful tool for the discovery of molecular markers in breast ductal carcinoma in situ. Expert Rev Mol Diagn. 2013;13(2):151–65.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Surgery, Gastroenterological Surgery, Graduate School of MedicineOsaka UniversitySuita CityJapan
  2. 2.Division of Health Sciences, Department of Molecular Pathology, Graduate School of MedicineOsaka UniversitySuita CityJapan

Personalised recommendations