Advertisement

Associating Protein Interactions with Disease Comorbidity to Prioritize Colorectal Cancer Genes

  • Sayedeh Razieh Abdollahi Demneh
  • Sama Goliaei
  • Zahra Razaghi Moghadam
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 64)

Abstract

Identification of disease causing genes is one of the most important topics in human health that affects disease therapy and understanding disease mechanism. Genome-wide association studies focus on chromosomal locus which contains many suspected disease genes. Gene prioritization methods identify the most probable unknown disease genes due to this locus. In this study a network-based approach is proposed to prioritize colorectal cancer genes. Different methods involved in this approach are random walk with restart, network propagation and shortest path algorithms, which are separately applied on protein-protein interaction network to prioritize genes. Then these methods are combined in different ways to find the best combination of them for identifying disease genes. Finally by looking through comorbid diseases to colorectal cancer and extracting their causing genes, the proposed approach is reconsidered. The method is validated by cross-validation analysis and its results are compared with other prioritization methods. This comparison shows the better performance of this new approach.

Notes

Conflict of Interest

We have no conflict of interest to declare.

References

  1. 1.
    T. K. Gandhi, J. Zhong, S. Mathivanan, L. Karthick, K. N. Chandrika, S. S. Mohan, et al., Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets, Nat Genet, vol. 38, pp. 285–293, Mar 2006.CrossRefGoogle Scholar
  2. 2.
    M. Krauthammer, C. A. Kaufmann, T. C. Gilliam, and A. Rzhetsky, Molecular triangulation: bridging linkage and molecular-network information for identifying candidate genes in Alzheimer’s disease, Proc Natl Acad Sci U S A, vol. 101, pp. 15148–15153, 19 Oct 2004.CrossRefGoogle Scholar
  3. 3.
    R. A. George, J. Y. Liu, L. L. Feng, R. J. Bryson-Richardson, D. Fatkin, and M. A. Wouters, Analysis of protein sequence and interaction data for candidate disease gene prediction, Nucleic Acids Res, vol. 34, p. e130, 2006.CrossRefGoogle Scholar
  4. 4.
    M. Oti, B. Snel, M. A. Huynen, and H. G. Brunner, Predicting disease genes using protein-protein interactions, J Med Genet, vol. 43, pp. 691–698, Aug 2006.CrossRefGoogle Scholar
  5. 5.
    S. Erten, G. Bebek, R. M. Ewing, and M. Koyuturk, DADA: Degree-Aware Algorithms for Network-Based Disease Gene Prioritization, BioData Min, vol. 4, p. 19, 2011.Google Scholar
  6. 6.
    S. Kohler, S. Bauer, D. Horn, and P. N. Robinson, Walking the interactome for prioritization of candidate disease genes, Am J Hum Genet, vol. 82, pp. 949–958, Apr 2008.CrossRefGoogle Scholar
  7. 7.
    O. Vanunu, O. Magger, E. Ruppin, T. Shlomi, and R. Sharan, Associating genes and protein complexes with disease via network propagation, PLoS Comput Biol, vol. 6, p. e1000641, Jan 2010.MathSciNetCrossRefGoogle Scholar
  8. 8.
    N. T. Doncheva, T. Kacprowski, and M. Albrecht, Recent approaches to the prioritization of candidate disease genes, Wiley Interdiscip Rev Syst Biol Med, vol. 4, pp. 429–442, Sep–Oct 2012.Google Scholar
  9. 9.
    S. Aerts, D. Lambrechts, S. Maity, P. Van Loo, B. Coessens, F. De Smet, et al., Gene prioritization through genomic data fusion, Nat Biotechnol, vol. 24, pp. 537–544, May 2006.CrossRefGoogle Scholar
  10. 10.
    T. H. Pers, N. T. Hansen, K. Lage, P. Koefoed, P. Dworzynski, M. L. Miller, et al., Meta-analysis of heterogeneous data sources for genome-scale identification of risk genes in complex phenotypes, Genet Epidemiol, vol. 35, pp. 318–32, Jul 2011.CrossRefGoogle Scholar
  11. 11.
    K. Lage, E. O. Karlberg, Z. M. Storling, P. I. Olason, A. G. Pedersen, O. Rigina, et al., A human phenome-interactome network of protein complexes implicated in genetic disorders, Nat Biotechnol, vol. 25, pp. 309–316, Mar 2007.CrossRefGoogle Scholar
  12. 12.
    J. Pinero, N. Queralt-Rosinach, A. Bravo, J. Deu-Pons, A. Bauer-Mehren, M. Baron, et al., DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes, Database (Oxford), vol. 2015, p. bav028, 2015.CrossRefGoogle Scholar
  13. 13.
    E. W. Dijkstra, A note on two problem in connexion with graphs, Numerische Mathematik, pp. 269–271, 1959.MathSciNetCrossRefGoogle Scholar
  14. 14.
    N. Rappaport, N. Nativ, G. Stelzer, M. Twik, Y. Guan-Golan, T. Iny Stein, et al., MalaCards: an integrated compendium for diseases and their annotation, Database, vol. 2013, pp. bat018–bat018, 2013.Google Scholar
  15. 15.
    T. R. Dreszer, D. Karolchik, A. S. Zweig, A. S. Hinrichs, B. J. Raney, R. M. Kuhn, et al., The UCSC Genome Browser database: extensions and updates 2011, Nucleic Acids Res, vol. 40, pp. D918–D923, Jan 2012.CrossRefGoogle Scholar
  16. 16.
    J. Chen, H. Xu, B. J. Aronow, and A. G. Jegga, Improved human disease candidate gene prioritization using mouse phenotype, BMC Bioinformatics, vol. 8, p. 392, 2007.CrossRefGoogle Scholar
  17. 17.
    W. Wang, Y. Chen, Y. Zhou, R. Shields, S. K. Chanda, R. C. Elston, and J. Li, In Silico Gene Prioritization by Integrating Multiple Data Sources, PLoS ONE, vol. 6, 2011.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sayedeh Razieh Abdollahi Demneh
    • 1
  • Sama Goliaei
    • 1
  • Zahra Razaghi Moghadam
    • 1
  1. 1.University of TehranTehranIran

Personalised recommendations