Advertisement

Treatment-Resistant Depression: Understandings on the Neurobiological Etiology that Lead to Novel Pharmacological Treatment Options

  • Eunsoo Won
  • Byoung-Joo Ham
  • Yong-Ku KimEmail author
Chapter

Abstract

Treatment-resistant depression (TRD) places a great burden not only to patients but society as a whole. A deep understanding of the neurobiological etiology of TRD will aid us to develop effective treatment strategies for TRD. In this chapter, we will discuss the recent findings on neurobiological mechanisms underlying TRD and corresponding novel pharmacological treatment strategies. Genetics and interactions with environmental factors; alterations in neural substrates, neuroinflammatory conditions, and glutamatergic neurotransmission; and glial cell pathology have been discussed. Anti-inflammatory drugs and ketamine have been suggested as novel treatment agents for TRD. Future studies that investigate the long-term efficacies and safety of such new treatment options in TRD are needed.

Keywords

Treatment-resistant depression Neurobiological etiology Novel pharmacological treatment option 

References

  1. 1.
    Nutt DJ. Relationship of neurotransmitters to the symptoms of major depressive disorder. J Clin Psychiatry. 2008;69(Suppl E1):4–7.PubMedGoogle Scholar
  2. 2.
    Garfield S, Francis SA, Smith FJ. Building concordant relationships with patients starting antidepressant medication. Patient Educ Couns. 2004;55(2):241–6.CrossRefGoogle Scholar
  3. 3.
    Gaynes BN, Rush AJ, Trivedi MH, Wisniewski SR, Spencer D, Fava M. The STAR*D study: treating depression in the real world. Cleve Clin J Med. 2008;75(1):57–66.CrossRefGoogle Scholar
  4. 4.
    Wijeratne C, Sachdev P. Treatment-resistant depression: critique of current approaches. Aust N Z J Psychiatry. 2008;42(9):751–62.CrossRefGoogle Scholar
  5. 5.
    Bonvicini C, Minelli A, Scassellati C, Bortolomasi M, Segala M, Sartori R, et al. Serotonin transporter gene polymorphisms and treatment-resistant depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2010;34(6):934–9.CrossRefGoogle Scholar
  6. 6.
    Anttila S, Viikki M, Huuhka K, Huuhka M, Huhtala H, Rontu R, et al. TPH2 polymorphisms may modify clinical picture in treatment-resistant depression. Neurosci Lett. 2009;464(1):43–6.CrossRefGoogle Scholar
  7. 7.
    Houston JP, Lau K, Aris V, Liu W, Fijal BA, Heinloth AN, et al. Association of common variations in the norepinephrine transporter gene with response to olanzapine-fluoxetine combination versus continued-fluoxetine treatment in patients with treatment-resistant depression: a candidate gene analysis. J Clin Psychiatry. 2012;73(6):878–85.CrossRefGoogle Scholar
  8. 8.
    Lin Z, He H, Zhang C, Wang Z, Jiang M, Li Q, et al. Influence of Val108/158Met COMT gene polymorphism on the efficacy of modified electroconvulsive therapy in patients with treatment resistant depression. Cell Biochem Biophys. 2015;71(3):1387–93.CrossRefGoogle Scholar
  9. 9.
    Liu RT, Alloy LB. Stress generation in depression: a systematic review of the empirical literature and recommendations for future study. Clin Psychol Rev. 2010;30(5):582–93.CrossRefGoogle Scholar
  10. 10.
    Heim C, Binder EB. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp Neurol. 2012;233(1):102–11.CrossRefGoogle Scholar
  11. 11.
    Na KS, Won E, Kang J, Chang HS, Yoon HK, Tae WS, et al. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder. Sci Rep. 2016;6:21089.CrossRefGoogle Scholar
  12. 12.
    Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM. Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry J Ment Sci. 1998;172:527–32.CrossRefGoogle Scholar
  13. 13.
    Maller JJ, Daskalakis ZJ, Thomson RH, Daigle M, Barr MS, Fitzgerald PB. Hippocampal volumetrics in treatment-resistant depression and schizophrenia: the devil’s in de-tail. Hippocampus. 2012;22(1):9–16.CrossRefGoogle Scholar
  14. 14.
    Furtado CP, Maller JJ, Fitzgerald PB. A magnetic resonance imaging study of the entorhinal cortex in treatment-resistant depression. Psychiatry Res. 2008;163(2):133–42.CrossRefGoogle Scholar
  15. 15.
    Phillips JL, Batten LA, Tremblay P, Aldosary F, Blier P. A prospective, longitudinal study of the effect of remission on cortical thickness and hippocampal volume in patients with treatment-resistant depression. Int J Neuropsychopharmacol. 2015;18(8):1–9.CrossRefGoogle Scholar
  16. 16.
    de Kwaasteniet BP, Rive MM, Ruhe HG, Schene AH, Veltman DJ, Fellinger L, et al. Decreased resting-state connectivity between neurocognitive networks in treatment resistant depression. Front Psych. 2015;6:28.Google Scholar
  17. 17.
    Guo W, Liu F, Xue Z, Gao K, Liu Z, Xiao C, et al. Abnormal resting-state cerebellar-cerebral functional connectivity in treatment-resistant depression and treatment sensitive depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;44:51–7.CrossRefGoogle Scholar
  18. 18.
    Ma C, Ding J, Li J, Guo W, Long Z, Liu F, et al. Resting-state functional connectivity bias of middle temporal gyrus and caudate with altered gray matter volume in major depression. PLoS One. 2012;7(9):e45263.CrossRefGoogle Scholar
  19. 19.
    Wu QZ, Li DM, Kuang WH, Zhang TJ, Lui S, Huang XQ, et al. Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI. Hum Brain Mapp. 2011;32(8):1290–9.CrossRefGoogle Scholar
  20. 20.
    Paillere Martinot ML, Martinot JL, Ringuenet D, Galinowski A, Gallarda T, Bellivier F, et al. Baseline brain metabolism in resistant depression and response to transcranial magnetic stimulation. Neuropsychopharmacology. 2011;36(13):2710–9.CrossRefGoogle Scholar
  21. 21.
    Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.CrossRefGoogle Scholar
  22. 22.
    Kim YK, Na KS, Myint AM, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:277–84.CrossRefGoogle Scholar
  23. 23.
    Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013;70(1):31–41.CrossRefGoogle Scholar
  24. 24.
    Nelson LH, Lenz KM. Microglia depletion in early life programs persistent changes in social, mood-related, and locomotor behavior in male and female rats. Behav Brain Res. 2017;316:279–93.CrossRefGoogle Scholar
  25. 25.
    Fenn AM, Gensel JC, Huang Y, Popovich PG, Lifshitz J, Godbout JP. Immune activation promotes depression 1 month after diffuse brain injury: a role for primed microglia. Biol Psychiatry. 2014;76(7):575–84.CrossRefGoogle Scholar
  26. 26.
    Noda M. Dysfunction of glutamate receptors in microglia may cause neurodegeneration. Curr Alzheimer Res. 2016;13(4):381–6.CrossRefGoogle Scholar
  27. 27.
    Lindqvist D, Dhabhar FS, James SJ, Hough CM, Jain FA, Bersani FS, et al. Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology. 2017;76:197–205.CrossRefGoogle Scholar
  28. 28.
    Emsley JG, Mitchell BD, Kempermann G, Macklis JD. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol. 2005;75(5):321–41.CrossRefGoogle Scholar
  29. 29.
    Ernst A, Frisen J. Adult neurogenesis in humans- common and unique traits in mammals. PLoS Biol. 2015;13(1):e1002045.CrossRefGoogle Scholar
  30. 30.
    Vadodaria KC, Gage FH. SnapShot: adult hippocampal neurogenesis. Cell. 2014;156(5):1114–e1.CrossRefGoogle Scholar
  31. 31.
    Cameron HA, Glover LR. Adult neurogenesis: beyond learning and memory. Annu Rev Psychol. 2015;66:53–81.CrossRefGoogle Scholar
  32. 32.
    Odaka H, Adachi N, Numakawa T. Impact of glucocorticoid on neurogenesis. Neural Regen Res. 2017;12(7):1028–35.CrossRefGoogle Scholar
  33. 33.
    Vollmayr B, Mahlstedt MM, Henn FA. Neurogenesis and depression: what animal models tell us about the link. Eur Arch Psychiatry Clin Neurosci. 2007;257(5):300–3.CrossRefGoogle Scholar
  34. 34.
    Parnet P, Kelley KW, Bluthe RM, Dantzer R. Expression and regulation of interleukin-1 receptors in the brain. Role in cytokines-induced sickness behavior. J Neuroimmunol. 2002;125(1–2):5–14.CrossRefGoogle Scholar
  35. 35.
    Arai K, Matsuki N, Ikegaya Y, Nishiyama N. Deterioration of spatial learning performances in lipopolysaccharide-treated mice. Jpn J Pharmacol. 2001;87(3):195–201.CrossRefGoogle Scholar
  36. 36.
    Koo JW, Duman RS. IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A. 2008;105(2):751–6.CrossRefGoogle Scholar
  37. 37.
    Wu MD, Hein AM, Moravan MJ, Shaftel SS, Olschowka JA, O'Banion MK. Adult murine hippocampal neurogenesis is inhibited by sustained IL-1beta and not rescued by voluntary running. Brain Behav Immun. 2012;26(2):292–300.CrossRefGoogle Scholar
  38. 38.
    Kaneko N, Kudo K, Mabuchi T, Takemoto K, Fujimaki K, Wati H, et al. Suppression of cell proliferation by interferon-alpha through interleukin-1 production in adult rat dentate gyrus. Neuropsychopharmacology. 2006;31(12):2619–26.CrossRefGoogle Scholar
  39. 39.
    Taga T, Kishimoto T. Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol. 1997;15:797–819.CrossRefGoogle Scholar
  40. 40.
    Holmberg KH, Patterson PH. Leukemia inhibitory factor is a key regulator of astrocytic, microglial and neuronal responses in a low-dose pilocarpine injury model. Brain Res. 2006;1075(1):26–35.CrossRefGoogle Scholar
  41. 41.
    Watanabe Y, Hashimoto S, Kakita A, Takahashi H, Ko J, Mizuno M, et al. Neonatal impact of leukemia inhibitory factor on neurobehavioral development in rats. Neurosci Res. 2004;48(3):345–53.CrossRefGoogle Scholar
  42. 42.
    Aharoni R, Arnon R, Eilam R. Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neurosci Off J Soc Neurosci. 2005;25(36):8217–28.CrossRefGoogle Scholar
  43. 43.
    Sheng W, Zong Y, Mohammad A, Ajit D, Cui J, Han D, et al. Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA(2)-IIA expression in astrocytes and microglia. J Neuroinflammation. 2011;8:121.CrossRefGoogle Scholar
  44. 44.
    Yang L, Lindholm K, Konishi Y, Li R, Shen Y. Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. J Neurosci Off J Soc Neurosci. 2002;22(8):3025–32.CrossRefGoogle Scholar
  45. 45.
    Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel UL. Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. J Biol Chem. 2004;279(31):32869–81.CrossRefGoogle Scholar
  46. 46.
    Dybedal I, Bryder D, Fossum A, Rusten LS, Jacobsen SE. Tumor necrosis factor (TNF)-mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood. 2001;98(6):1782–91.CrossRefGoogle Scholar
  47. 47.
    Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJ, Bonde S, Kokaia Z, et al. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci Off J Soc Neurosci. 2006;26(38):9703–12.CrossRefGoogle Scholar
  48. 48.
    Chen J, Jacobs-Helber SM, Barber DL, Sawyer ST. Erythropoietin-dependent autocrine secretion of tumor necrosis factor-alpha in hematopoietic cells modulates proliferation via MAP kinase--ERK-1/2 and does not require tyrosine docking sites in the EPO receptor. Exp Cell Res. 2004;298(1):155–66.CrossRefGoogle Scholar
  49. 49.
    Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci. 2001;4(11):1116–22.CrossRefGoogle Scholar
  50. 50.
    Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, et al. Control of synaptic strength by glial TNFalpha. Science. 2002;295(5563):2282–5.CrossRefGoogle Scholar
  51. 51.
    Serafini G, Howland RH, Rovedi F, Girardi P, Amore M. The role of ketamine in treatment-resistant depression: a systematic review. Curr Neuropharmacol. 2014;12(5):444–61.CrossRefGoogle Scholar
  52. 52.
    Choi DW. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett. 1985;58(3):293–7.CrossRefGoogle Scholar
  53. 53.
    Balazs R. Trophic effect of glutamate. Curr Top Med Chem. 2006;6(10):961–8.CrossRefGoogle Scholar
  54. 54.
    Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science. 1992;258(5082):597–603.CrossRefGoogle Scholar
  55. 55.
    Lapidus KA, Soleimani L, Murrough JW. Novel glutamatergic drugs for the treatment of mood disorders. Neuropsychiatr Dis Treat. 2013;9:1101–12.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Lipton SA, Kater SB. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci. 1989;12(7):265–70.CrossRefGoogle Scholar
  57. 57.
    Zhou X, Chen Z, Yun W, Ren J, Li C, Wang H. Extrasynaptic NMDA receptor in excitotoxicity: function revisited. Neuroscientist: Rev J Bringing Neurobiol Neurol Psychiatry. 2015;21(4):337–44.CrossRefGoogle Scholar
  58. 58.
    Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010;11(10):682–96.CrossRefGoogle Scholar
  59. 59.
    Popoli M, Yan Z, McEwen BS, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 2011;13(1):22–37.CrossRefGoogle Scholar
  60. 60.
    Zheng K, Scimemi A, Rusakov DA. Receptor actions of synaptically released glutamate: the role of transporters on the scale from nanometers to microns. Biophys J. 2008;95(10):4584–96.CrossRefGoogle Scholar
  61. 61.
    Ivanov A, Pellegrino C, Rama S, Dumalska I, Salyha Y, Ben-Ari Y, et al. Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J Physiol. 2006;572(Pt 3):789–98.CrossRefGoogle Scholar
  62. 62.
    Kaufman AM, Milnerwood AJ, Sepers MD, Coquinco A, She K, Wang L, et al. Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons. J Neurosci Off J Soc Neurosci. 2012;32(12):3992–4003.CrossRefGoogle Scholar
  63. 63.
    Molokanova E, Akhtar MW, Sanz-Blasco S, Tu S, Pina-Crespo JC, McKercher SR, et al. Differential effects of synaptic and extrasynaptic NMDA receptors on Abeta-induced nitric oxide production in cerebrocortical neurons. J Neurosci Off J Soc Neurosci. 2014;34(14):5023–8.CrossRefGoogle Scholar
  64. 64.
    Doherty AJ, Palmer MJ, Bortolotto ZA, Hargreaves A, Kingston AE, Ornstein PL, et al. A novel, competitive mGlu(5) receptor antagonist (LY344545) blocks DHPG-induced potentiation of NMDA responses but not the induction of LTP in rat hippocampal slices. Br J Pharmacol. 2000;131(2):239–44.CrossRefGoogle Scholar
  65. 65.
    Awad H, Hubert GW, Smith Y, Levey AI, Conn PJ. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J Neurosci Off J Soc Neurosci. 2000;20(21):7871–9.CrossRefGoogle Scholar
  66. 66.
    Palucha-Poniewiera A, Wieronska JM, Branski P, Burnat G, Chruscicka B, Pilc A. Is the mGlu5 receptor a possible target for new antidepressant drugs? Pharmacol Rep : PR. 2013;65(6):1506–11.CrossRefGoogle Scholar
  67. 67.
    Anwyl R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Rev Neurosci. 1992;3(3):217–31.CrossRefGoogle Scholar
  68. 68.
    Wright RA, Johnson BG, Zhang C, Salhoff C, Kingston AE, Calligaro DO, et al. CNS distribution of metabotropic glutamate 2 and 3 receptors: transgenic mice and [(3)H]LY459477 autoradiography. Neuropharmacology. 2013;66:89–98.CrossRefGoogle Scholar
  69. 69.
    Williams CJ, Dexter DT. Neuroprotective and symptomatic effects of targeting group III mGlu receptors in neurodegenerative disease. J Neurochem. 2014;129(1):4–20.CrossRefGoogle Scholar
  70. 70.
    Kettenmann H, Verkhratsky A. Neuroglia: the 150 years after. Trends Neurosci. 2008;31(12):653–9.CrossRefGoogle Scholar
  71. 71.
    Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG. Glutamate-mediated astrocyte-neuron signalling. Nature. 1994;369(6483):744–7.CrossRefGoogle Scholar
  72. 72.
    Krystal JH, Sanacora G, Duman RS. Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry. 2013;73(12):1133–41.CrossRefGoogle Scholar
  73. 73.
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8(6):752–8.CrossRefGoogle Scholar
  74. 74.
    Riazi K, Galic MA, Kentner AC, Reid AY, Sharkey KA, Pittman QJ. Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J Neurosci Off J Soc Neurosci. 2015;35(12):4942–52.CrossRefGoogle Scholar
  75. 75.
    Blakely PK, BK K-DM, Tyler KL, Irani DN. Disrupted glutamate transporter expression in the spinal cord with acute flaccid paralysis caused by West Nile virus infection. J Neuropathol Exp Neurol. 2009;68(10):1061–72.CrossRefGoogle Scholar
  76. 76.
    Zhong C, Luo Q, Jiang J. Blockade of N-acetylaspartylglutamate peptidases: a novel protective strategy for brain injuries and neurological disorders. Int J Neurosci. 2014;124(12):867–73.CrossRefGoogle Scholar
  77. 77.
    Passani L, Elkabes S, Coyle JT. Evidence for the presence of N-acetylaspartylglutamate in cultured oligodendrocytes and LPS activated microglia. Brain Res. 1998;794(1):143–5.CrossRefGoogle Scholar
  78. 78.
    Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, et al. Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One. 2011;6(1):e15973.CrossRefGoogle Scholar
  79. 79.
    Wang X, Wu H, Miller AH. Interleukin 1alpha (IL-1alpha) induced activation of p38 mitogen-activated protein kinase inhibits glucocorticoid receptor function. Mol Psychiatry. 2004;9(1):65–75.CrossRefGoogle Scholar
  80. 80.
    Heninger GR, Delgado PL, Charney DS. The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry. 1996;29(1):2–11.CrossRefGoogle Scholar
  81. 81.
    Hashioka S, McGeer PL, Monji A, Kanba S. Anti-inflammatory effects of antidepressants: possibilities for preventives against Alzheimer’s disease. Cent Nerv Syst Agents Med Chem. 2009;9(1):12–9.CrossRefGoogle Scholar
  82. 82.
    Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008;33(1):88–109.CrossRefGoogle Scholar
  83. 83.
    Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B, et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry. 2006;11(7):680–4.CrossRefGoogle Scholar
  84. 84.
    Abbasi SH, Hosseini F, Modabbernia A, Ashrafi M, Akhondzadeh S. Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: randomized double-blind placebo-controlled study. J Affect Disord. 2012;141(2–3):308–14.CrossRefGoogle Scholar
  85. 85.
    Akhondzadeh S, Jafari S, Raisi F, Nasehi AA, Ghoreishi A, Salehi B, et al. Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depress Anxiety. 2009;26(7):607–11.CrossRefGoogle Scholar
  86. 86.
    Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A, et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet. 2006;367(9504):29–35.CrossRefGoogle Scholar
  87. 87.
    Menter A, Augustin M, Signorovitch J, Yu AP, Wu EQ, Gupta SR, et al. The effect of adalimumab on reducing depression symptoms in patients with moderate to severe psoriasis: a randomized clinical trial. J Am Acad Dermatol. 2010;62(5):812–8.CrossRefGoogle Scholar
  88. 88.
    Ertenli I, Ozer S, Kiraz S, Apras SB, Akdogan A, Karadag O, et al. Infliximab, a TNF-alpha antagonist treatment in patients with ankylosing spondylitis: the impact on depression, anxiety and quality of life level. Rheumatol Int. 2012;32(2):323–30.CrossRefGoogle Scholar
  89. 89.
    Mendlewicz J, Kriwin P, Oswald P, Souery D, Alboni S, Brunello N. Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot open-label study. Int Clin Psychopharmacol. 2006;21(4):227–31.CrossRefGoogle Scholar
  90. 90.
    Miyaoka T, Wake R, Furuya M, Liaury K, Ieda M, Kawakami K, et al. Minocycline as adjunctive therapy for patients with unipolar psychotic depression: an open-label study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;37(2):222–6.CrossRefGoogle Scholar
  91. 91.
    Ajmone-Cat MA, Cacci E, Minghetti L. Non steroidal anti-inflammatory drugs and neurogenesis in the adult mammalian brain. Curr Pharm Des. 2008;14(14):1435–42.CrossRefGoogle Scholar
  92. 92.
    Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302(5651):1760–5.CrossRefGoogle Scholar
  93. 93.
    Uppal A, Singh A, Gahtori P, Ghosh SK, Ahmad MZ. Antidepressants: current strategies and future opportunities. Curr Pharm Des. 2010;16(38):4243–53.CrossRefGoogle Scholar
  94. 94.
    Huynh NN, McIntyre RS. What are the implications of the STAR*D trial for primary care? A review and synthesis. Prim Care Companion J Clin Psychiatry. 2008;10(2):91–6.CrossRefGoogle Scholar
  95. 95.
    Dutta A, McKie S, Deakin JF. Ketamine and other potential glutamate antidepressants. Psychiatry Res. 2015;225(1–2):1–13.CrossRefGoogle Scholar
  96. 96.
    McGirr A, Berlim MT, Bond DJ, Fleck MP, Yatham LN. Lam RW. A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychol Med. 2015;45(4):693–704.CrossRefGoogle Scholar
  97. 97.
    Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475(7354):91–5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Psychiatry, College of MedicineKorea UniversitySeoulRepublic of Korea
  2. 2.Department of Psychiatry, College of MedicineKorea University Ansan HospitalAnsan CityRepublic of Korea

Personalised recommendations