Integrated Approaches for Treatment-Resistant Psychiatric Disorders

  • Seon-Cheol Park
  • Yong-Ku KimEmail author


Integrated approaches for treatment-resistant psychiatric disorders can be an important issue in the perspective of clinical psychiatry. In the context of “next-generation treatments for psychiatric disorders,” the necessity for more precise and specific treatment approaches has been proposed. Hence, it has been suggested that treatment-resistant psychiatric disorders should be defined not by post hoc analyses but with clinical and biological markers. More specifically, the synergistic effect of interactions between specific genes and childhood trauma has been identified as a significant factor for defining treatment resistance in psychiatric disorders. Moreover, it has been consistently reported that antidepressant effects can interact with environmental factors. In addition, findings have supported the hypothetical conceptualization of an integrated approach to treatment-resistant psychiatric disorders. A new approach to psychotherapy, inspired by the reconsolidation-updating paradigm, which we refer to as the histone acetylation inhibitor-augmented psychotherapy (also called “plasticity-augmented psychotherapy”) is proposed. Hence, we speculate that the combination of psychotherapy and pharmacotherapy can be integrated from the viewpoint of epigenetic regulation and used to manage treatment-resistant psychiatric disorders in the future.


Epigenetic regulation Gene-childhood trauma interaction Integrated approach Treatment resistance 


  1. 1.
    Kim Y-K. Can we cope with treatment refractoriness in psychiatric disorders? Prog Neuro-Psychopharmcol Biol Psychiatry. 2016;70:101–2.CrossRefGoogle Scholar
  2. 2.
    Insel TR. Next-generation treatments for mental disorders. Sci Transl Med. 2012;4:155psc19.CrossRefGoogle Scholar
  3. 3.
    Park S-C, Choi J. Issues in the classification of psychotic depression. In: Kim Y-K, editor. Major depressive disorder: risk factors, characteristics and treatment options. New York: NOVA Science Publishers; 2017. p. 49–67.Google Scholar
  4. 4.
    Park S-C, Oh HS, Oh DH, Jung SA, Na KS, Lee HW, et al. Evidence-based, non-pharmacological treatment guideline for depression in Korea. J Korean Med Sci. 2014;29:12–22.CrossRefGoogle Scholar
  5. 5.
    Won E, Park S-C, Han KM, Sung SH, Lee HY, Paik JW, et al. Evidence-based, pharmacological treatment guideline for depression in Korea, revised edition. J Korean Med Sci. 2014;29:468–84.CrossRefGoogle Scholar
  6. 6.
    Akil H, Gordon J, Hen R, Javitch J, Mayberg H, McEwen B, et al. Treatment resistant depression: a multi-scale, systems biology approach. Neurosci Biobehav Rev. 2017;84:272–88. pii: S0149-7634(17)30368-8.CrossRefGoogle Scholar
  7. 7.
    Kim JS, Lee S-H. Influence of interaction between genes and childhood trauma on refractoriness in psychiatric disorders. Prog Neuro-Psychopharmcol Biol Psychiatry. 2016;70:162–9.CrossRefGoogle Scholar
  8. 8.
    Kim Y-K, Choi J, Park S-C. A novel bio-psychosocial-behavioral treatment model in schizophrenia. Int J Mol Sci. 2017;18:E734.CrossRefGoogle Scholar
  9. 9.
    Kirsch I. Challenging received wisdom: antidepressants and placebo effect. Mcgill J Med. 2008;11:219–22.Google Scholar
  10. 10.
    Kirsch I, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ, Johnson BT. Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLoS Med. 2008;5:e45.CrossRefGoogle Scholar
  11. 11.
    Cohen A, Houck PR, Szanto K, Dew MA, Gliman SE, Reynolds CF. Social inequalities in response to antidepressant treatment in older adults. Arch Gen Psychiatry. 2006;63:50–6.CrossRefGoogle Scholar
  12. 12.
    Trivedi ME, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006;163:28–40.CrossRefGoogle Scholar
  13. 13.
    Choi K-Y, Kim Y-K. Plasticity-augmented psychotherapy for refractory depressive and anxiety disorders. Prog Neuro-Psychopharmcol Biol Psychiatry. 2016;70:134–47.CrossRefGoogle Scholar
  14. 14.
    Freire TFV, Rocha NSD, Fleck MPA. The association of electroconvulsive therapy to pharmacological treatment and its influence on cytokines. J Psychiatr Res. 2017;92:205–11.CrossRefGoogle Scholar
  15. 15.
    Bay-Richter C, Linderholm KR, Lim CK, Samuelsson M, Traskman-Bendz L, Guillemin GJ, et al. A role for inflammatory metabolites as modulators of the glutamate N-methyl-D-aspartate receptor in depression and suicidality. Brain Behav Immun. 2015;43:110–7.CrossRefGoogle Scholar
  16. 16.
    Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67:446–57.CrossRefGoogle Scholar
  17. 17.
    Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732–41.CrossRefGoogle Scholar
  18. 18.
    Dell’Oso B, Mundo E, D’Urso N, Pozzoli S, Buoli M, Ciabatti MT, et al. Augmentative repetitive navigated transcranial magnetic stimulation (rTMS) in drug-resistant bipolar depression. Bipolar Disord. 2009;11:76–81.CrossRefGoogle Scholar
  19. 19.
    Dibaz N, Sengul C, Okay T, Bayam G, Turkoglu A. The combined treatment of venlafaxine and ECT in treatment-resistant depressive patients. Int J Psychiatry Clin Pract. 2005;9:55–9.CrossRefGoogle Scholar
  20. 20.
    Meyberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;4:651–60.CrossRefGoogle Scholar
  21. 21.
    Eljamel S. Strategies for the return of behavioral surgery. Surg Neurol Int. 2012;3:S4–9.CrossRefGoogle Scholar
  22. 22.
    Hugo F, van Heerden BB, Zygo-Dirway N, Stein DJ. Functional brain imaging in obsessive-compulsive disorder secondary to neurological lesions. Depress Anxiety. 1999;10:129–36.CrossRefGoogle Scholar
  23. 23.
    Rosenberg DR, Kehavan MD. Toward a neurodevelopmental model of obsessive-compulsive disorder. Biol Psychiatry. 1998;43:623–40.CrossRefGoogle Scholar
  24. 24.
    Bares M, Novak T, Kopecek M, Stopkova P, Sos P. Is combined treatment more effective than switching to monotherapy in patients with resistant depression?: a retrospective study. Neuroendocrinol Lett. 2009;30:723–8.PubMedGoogle Scholar
  25. 25.
    Pridmore S, Tunier-Shea S. Medication options in the treatment of treatment-resistant depression. Aust N Z J Psychiatry. 2004;38:219–25.CrossRefGoogle Scholar
  26. 26.
    Benedetti F, Riccaboni R, Locatelli C, Poletti S, Dallaspezia S, Colombo C. Rapid treatment response of suicidal symptoms to lithium, sleep deprivation, and light therapy (chronotherapeutics) in drug-resistant bipolar depression. J Clin Psychiatry. 2014;75:133–40.CrossRefGoogle Scholar
  27. 27.
    Mura G, Moro MF, Patten SB, Carta MG. Exercise as an add-on strategy for the treatment of major depressive disorder: a systematic review. CNS Spectr. 2014;19:496–508.CrossRefGoogle Scholar
  28. 28.
    Koek RJ, Schwartz HN, Scully S, Langevin J-P, Spangler S, Korotinsky A, et al. Treatment-refractory posttraumatic stress disorder (TRPTSD): a review and framework for the future. Prog Neuro-Psychopharmcol Biol Psychiatry. 2016;70:170–218.CrossRefGoogle Scholar
  29. 29.
    Park S-C, Park YC, Lee MS, Chang HS. Plasma brain-derived neurotrophic factor level may contribute to the therapeutic response to eye movement desensitization and reprocessing in complex posttraumatic stress disorder: a pilot study. Acta Neuropsychiatr. 2012;24:384–6.CrossRefGoogle Scholar
  30. 30.
    Kessler RC, Delmer O, Frank RG, Olfson M, Pincus HA, Walters EE, et al. Prevalence and treatment of mental disorders, 1990 to 2003. N Engl J Med. 2005;352:2515–23.CrossRefGoogle Scholar
  31. 31.
    Torgalsboen AK, Suzuki H, Rabi K, Sheu YS, Polcari A, Teicher MH. Reduced prefrontal cortical gray matter volume in young adults exposed in the early course of first-episode schizophrenia. Psychiatry Res. 2014;216:1–5.CrossRefGoogle Scholar
  32. 32.
    Fervaha G, Foussias G, Agid O, Remington G. Motivational and neurocognitive deficits are central to the prediction of longitudinal functional outcome in schizophrenia. Acta Psychiatr Scand. 2014;130:290–9.CrossRefGoogle Scholar
  33. 33.
    Aas M, Djurovic S, Athanasiu L, Steen NE, Agartz I, Lorentzen S, et al. Serotonin transporter gene polymorphism, childhood trauma and cognition in patients with psychotic disorders. Schizophr Bull. 2012;38:15–22.CrossRefGoogle Scholar
  34. 34.
    Aas M, Haukvik UK, Djurovic S, Bergmann O, Athanasiu L, Tesli MS, et al. BDNF val66met modulates the association between childhood trauma, cognitive and brain abnormalities in psychoses. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;46:181–8.CrossRefGoogle Scholar
  35. 35.
    Oliveria J, Etain B, Lajnef M, Hamdani N, Bennabi M, Bengouga D, et al. Combined effects of TLR gene polymorphism and early life stress on the age at onset of bipolar disorders. PLoS One. 2015;10:e0119702.CrossRefGoogle Scholar
  36. 36.
    Etain B, Henry C, Belliver F, Mathieu F, Leboyer M. Beyond genetics: childhood affective trauma in bipolar disorder. Bipolar Disord. 2008;10:867–76.CrossRefGoogle Scholar
  37. 37.
    Perroud N, Courter P, Vincze I, Jausssent I, Jollant F, Belliveier F, et al. Interaction between BDNF Val66Met and childhood trauma on adult’s violent suicide attempt. Genes Brain Behav. 2008;7:314–22.CrossRefGoogle Scholar
  38. 38.
    Pregelj P, Nedic G, Paska AV, Zupanc Y, Nikolac M, Balazic J, et al. The association between brain-derived neurotrophic factor polymorphism (BDNF Val66Met) and suicide. J Affect Disord. 2011;128:287–90.CrossRefGoogle Scholar
  39. 39.
    Miller S, Hallmayer J, Wang PW, Hill SJ, Johnson SL, Ketter TA. Brain-derived neurotrophic factor val66met genotype and early life stress effects upon bipolar course. J Psychiatr Res. 2013;44:511–20.Google Scholar
  40. 40.
    Aguilera M, Arias B, Wichers M, Barrantes-Vidal N, Moya J, Villa H, et al. Early adversity and 5-HTT/BDNF genes: new evidence of gene-environment interactions on depressive symptoms in a general population. Psychol Med. 2009;39:1425–32.CrossRefGoogle Scholar
  41. 41.
    Lok A, Bockting CL, Koeter MW, Sneider H, Assies J, Mocking RJ, et al. Interaction between the MTHFR C677T polymorphism with traumatic childhood events predicts depression. Transl Psychiatry. 2013;3:e288.CrossRefGoogle Scholar
  42. 42.
    Juruena MF. Early-life stress and HPA axis trigger recurrent adulthood depression. Epilepsy Behav. 2014;38:148–59.CrossRefGoogle Scholar
  43. 43.
    Hardeveld F, Spijker J, Vreeburg SA, Graaf RD, Hendriks SM, Licht CM, et al. Increased cortisol awakening response was associated with time to recurrence of major depressive disorder. Psychoneuroendocrinology. 2014;50:62–71.CrossRefGoogle Scholar
  44. 44.
    Musazzi L, Mallei A, Tardito D, Gruber SH, El Khourt A, Racagni G, et al. Early-life stress and antidepressant treatment involve synaptic signaling and Erk kinase in a gene-environment model of depression. J Psychiatr Res. 2010;44:511–20.CrossRefGoogle Scholar
  45. 45.
    Bernstein DP, Stein JA, Newcomb MD, Walker E, Pogge D, Ahluvalia T, et al. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse Negl. 2003;27:169–90.CrossRefGoogle Scholar
  46. 46.
    Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB, et al. Association of FKB5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA. 2008;299:1291–305.CrossRefGoogle Scholar
  47. 47.
    Cloitre M, Gavert DW, Brewin CR, Bryant RA, Maercker A. Evidence for proposed ICD-11 PTSD and complex PTSD: a latent profile analysis. Eur J Psychotraumato. 2013;4:20706.CrossRefGoogle Scholar
  48. 48.
    Liberzon I, King AP, Ressler KJ, Almli LM, Zhang P, Ma ST, et al. Interaction of the ADRB2 gene polymorphism with childhood trauma in predicting adult symptoms of posttraumatic stress disorder. JAMA Psychiat. 2014;71:1174–82.CrossRefGoogle Scholar
  49. 49.
    Uddin M, Chang SC, Zhang C, Ressler K, Mercer KB, Galea S, et al. Adcyap1r1 genotype, posttraumatic stress disorder, and depression among women exposed to childhood maltreatment. Depress Anxiety. 2013;30:251–8.CrossRefGoogle Scholar
  50. 50.
    Almli LM, Mercer KB, Kerley K, Feng H, Bradley B, Conneely KN, et al. ADCYP1R1 genotype associates with post-traumatic stress symptoms in highly traumatized African-American female. Am J Genet B Neuropsychiatr Genet. 2013;162B:262–72.CrossRefGoogle Scholar
  51. 51.
    Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, et al. Posttraumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature. 2011;470:492–7.CrossRefGoogle Scholar
  52. 52.
    Mehta D, Klengel T, Conneely KN, Smith AK, Altmann A, Pace TW, et al. Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proc Natl Acad Sci U S A. 2013;110:8302–7.CrossRefGoogle Scholar
  53. 53.
    Elkin J, Shea MT, Watkins JT, Imber SD, Sotsky SM, Collins JF, et al. National institute of mental health treatment of depression collaborative research program. General effectiveness of treatment. Arch Gen Psychiatry. 1989;46:971–82.CrossRefGoogle Scholar
  54. 54.
    Khan A, Faucett J, Lichtenberg P, Kirsch I, Brown WA. A systematic review of comparative treatments and controls for depression. PLoS One. 2012;7:e41778.CrossRefGoogle Scholar
  55. 55.
    Marcus SC, Olfson M. National trends in the treatment for depression from 1998 to 2007. Arch Gen Psychiatry. 2010;67:1265–73.CrossRefGoogle Scholar
  56. 56.
    Olfson M, Marcus SC, Druss B, Elinson L, Tanielian T, Pincus HA. National trends in the outpatient treatment of depression. JAMA. 2002;287:203–9.CrossRefGoogle Scholar
  57. 57.
    Cuijepers P, Sijbrandij M, Koole SL, Andersson G, Beekman AT, Reynolds CF. Adding psychotherapy to antidepressant medication in depression and anxiety disorders: a meta-analysis. World Psychiatry. 2014;13:56–67.CrossRefGoogle Scholar
  58. 58.
    Hollon SD, DeRubeis RJ, Fawcett J, Amsterdam JD, Shelton DC, Ziecka J, et al. Effect of cognitive therapy with antidepressant medication vs antidepressant alone on the rate of recovery in major depressive disorder: a randomized clinical trial. JAMA Psychiat. 2014;71:1157–64.CrossRefGoogle Scholar
  59. 59.
    Schramm E, van Calker D, Dykierek P, Lieb K, Kech S, Zobel I, et al. An intensive treatment program of interpersonal psychotherapy plus pharmacotherapy for depressed inpatients: acute and long-term results. Am J Psychiatry. 2007;164:768–77.CrossRefGoogle Scholar
  60. 60.
    Cipriani A, Furukawa TA, Salanti G, Geddes JR, Higgins JP, Churchill R, et al. Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments in meta-analysis. Lancet. 2009;373:746–58.CrossRefGoogle Scholar
  61. 61.
    Barlow DH, Gorman JM, Shear MK, Woods SW. Cognitive-behavioral therapy, imipramine, or their combination for panic disorder: a randomized controlled trial. JAMA. 2000;283:2529–36.CrossRefGoogle Scholar
  62. 62.
    Furukawa TA, Watanabe N, Churchill R. Combined psychotherapy plus antidepressant for panic disorder with or without agoraphobia. Cochrane Database Syst Rev. 2007:CD004364.Google Scholar
  63. 63.
    Otto MW, Smits JAJ, Reese HE. Cognitive-behavioral therapy for the treatment of anxiety disorders. J Clin Psychiatry. 2004;65:S34–41.Google Scholar
  64. 64.
    Branchi I, Santarelli S, Capoccia S, Poggini S, D’Andrea I, Cirulli F, et al. Antidepressant treatment outcome depends on the quality of the living environment: a pre-clinical investigation in mice. PLoS One. 2013;8:e62226.CrossRefGoogle Scholar
  65. 65.
    Karpova NN, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N, Agustsdottir A, et al. Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science. 2011;334:1731–4.CrossRefGoogle Scholar
  66. 66.
    Castren E, Rantamaki T. The role of BDF and its receptors in depression and antidepressant action: reactivation of developmental plasticity. Dev Neurobiol. 2010;70:289–97.CrossRefGoogle Scholar
  67. 67.
    Gorgolla N, Caroni P, Luthi A, Henry C. Perineuronal nets protect fear memories from erasure. Science. 2009;325:1258–61.CrossRefGoogle Scholar
  68. 68.
    Mofils MS, Cowansage KK, Klann E, LeDoux JE. Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science. 2009;160:554–5.Google Scholar
  69. 69.
    Narder K, Hardt O. A single standard for memory: the case reconsolidation. Nat Rev Neurosci. 2009;10:224–34.CrossRefGoogle Scholar
  70. 70.
    Agren T, Engman J, Frick A, Bjorkstrand J, Larsson E-M, Furmark T, et al. Disruption of reconsolidation erases a fear memory trace in the human amygdala. Science. 2012;337:1550–2.CrossRefGoogle Scholar
  71. 71.
    Bjorkstrand J, Agren T, Frick A, Engman J, Larsson E-M, Furmark T, et al. Disruption of memory reconsolidation erases a fear memory trace in the human amygdala: an 18-month follow-up. PLoS Med. 2015;10:e100454.Google Scholar
  72. 72.
    Schiller D, Monfils MH, Raio CM, Johnson DC, LeDoux JE, Phelps EA. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature. 2010;463:49–53.CrossRefGoogle Scholar
  73. 73.
    Carrion VG, Haas BW, Garret A, Song S, Reiss AL. Reduced hippocampal activity in youth with posttraumatic stress symptoms: an fMRI study. J Pediatr Psychol. 2010;35:559–69.CrossRefGoogle Scholar
  74. 74.
    Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry. 2009;66:1075–82.CrossRefGoogle Scholar
  75. 75.
    Santoro A, Frankland PW. Chasing the engram: strategies to examine the memory trace. Mol Brain. 2014;5:32.Google Scholar
  76. 76.
    Tanaka KZ, Pevzner A, Hamidi AB, Nakazawa Y, Graham J, Wiltgen BJ. Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron. 2014;84:347–54.CrossRefGoogle Scholar
  77. 77.
    Bouton ME. Context and behavioral processes in extinction. Learn Mem. 2004;11:5–494.CrossRefGoogle Scholar
  78. 78.
    Debiec J, LeDoux JE, Nader K. Cellular and systems reconsolidation in the hippocampus. Neuron. 2002;36:527–38.CrossRefGoogle Scholar
  79. 79.
    Graff J, Kim D, Dobbin MM, Tsai LH. Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev. 2011;91:603–49.CrossRefGoogle Scholar
  80. 80.
    Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai L-H. Recovery of learning and memory is associated with chromatin remodeling. Nature. 2007;447:178–82.CrossRefGoogle Scholar
  81. 81.
    Guan J-S, Haggarty SJ, Giacometti E, Dannenberg J-H, Joseph N, Gao J, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009;459:55–60.CrossRefGoogle Scholar
  82. 82.
    Blagitko-Dorfs N, Jiang Y, Duque-Afonso J, Hiller J, Yalcin A, Greve G, et al. Epigenetic priming of AML blasts for all-trans retinoic acid-induced differentiation by the HDAC class-I selective inhibitor entinostat. PLoS One. 2013;8:e0129393.CrossRefGoogle Scholar
  83. 83.
    Gu S, Tian Y, Chlenski A, Salwen HR, Lu Z, Rai JU, et al. Valproic acid shows a potent antitumor effect with alteration of DNA methylation in neuroblastoma. Anti-Cancer Drugs. 2012;23:1054–66.CrossRefGoogle Scholar
  84. 84.
    Hubaux R, Vandermeers F, Cosse J-P, Crisanti C, Kapoor V, Albelda SM, et al. Valproic acid improves second-line regimen of small cell lung carcinoma in preclinical models. ERJ Open Res. 2015;1:00028.CrossRefGoogle Scholar
  85. 85.
    Graff J, Tsai L-H. The potential of HDAC inhibitors as cognitive enhancers. Annu Rev Pharmacol Toxicol. 2013;53:311–30.CrossRefGoogle Scholar
  86. 86.
    Noh H, Seo H. Age-dependent effects of valproic acid in Alzheimer’s disease (AD) mice are associated with nerve growth factor (NGF) regulation. Neuroscience. 2014;266:255–65.CrossRefGoogle Scholar
  87. 87.
    Xu K, Dai X-L, Huang H-C, Jiang Z-F. Targeting HDACs: a promising therapy for Alzheimer’s disease. Oxidative Med Cell Longev. 2011;83:722–35.Google Scholar
  88. 88.
    Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP, et al. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci. 2002;5:1242–61.CrossRefGoogle Scholar
  89. 89.
    Lindauer RJL, Vlieger E-J, Jalink M, Olff M, Carlier IVE, Majoie CBLM, et al. Smaller hippocampal volume in Dutch police officers with posttraumatic stress disorder. BPS. 2004;56:356–63.Google Scholar
  90. 90.
    Baldi E, Lorenzini CA, Bucherelli C. Footshock intensity and generalization in contextual and auditory-cued fear conditioning in the rat. Neurobiol Leran Mem. 2004;81:162–6.CrossRefGoogle Scholar
  91. 91.
    Kaouane N, Porte Y, Vallee M, Brayda-Bruno L, Mons N, Calandreau L, et al. Glucocorticoids can induce PTSD-like memory impairments in mice. Science. 2012;334:1731–4.Google Scholar
  92. 92.
    Koenigs M, Grafman J. Posttraumatic stress disorder: the role of medial prefrontal cortex and amygdala. Neuroscientist. 2009;15:540–8.CrossRefGoogle Scholar
  93. 93.
    Xu W, Sudhof TC. A neural circuit for memory specificity and generalization. Science. 2013;339:1290–5.CrossRefGoogle Scholar
  94. 94.
    Warden MR, Selimbeyoglu A, Mirzabekov JJ, Lo M, Thompson KR, Kim S-Y, et al. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature. 2012;492:428–32.CrossRefGoogle Scholar
  95. 95.
    Lee E, Hong J, Park Y-G, Chae S, Kim Y, Kim D. Left brain cortical activity modulates stress effects on social behavior. Sci Rep. 2015;5:13342.CrossRefGoogle Scholar
  96. 96.
    Fukumoto J, Iijma M, Chaki S. The antidepressant effect of an mGlu2/3 receptor antagonist and ketamine require AMPA receptor stimulation in the mPFC and subsequent activation of the 5-HT neurons in the DRN. Neuropsychopharmacology. 2015;41:1046–56.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PsychiatryInje University College of Medicine and Haeundae Paik HospitalBusanRepublic of Korea
  2. 2.Department of Psychiatry, College of MedicineKorea University Ansan HospitalAnsanRepublic of Korea

Personalised recommendations